File size: 14,816 Bytes
b190b45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
#!/usr/bin/env python3
"""
Hugging Face Dataset Loader Service
دسترسی به Datasetهای رایگان HuggingFace
"""
import pandas as pd
from typing import Dict, List, Optional, Any, Union
import logging
import asyncio
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
# بررسی وجود کتابخانه datasets
try:
from datasets import load_dataset
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
logger.warning("datasets library not available. Install with: pip install datasets")
class HFDatasetService:
"""
سرویس برای بارگذاری و استفاده از Datasetهای رایگان HF
مزایا:
- دسترسی رایگان به 100,000+ dataset
- داده تاریخی کریپتو
- داده اخبار و sentiment
- بدون نیاز به API key (برای datasetهای public)
"""
# Datasetهای معتبر کریپتو که تأیید شدهاند
CRYPTO_DATASETS = {
"linxy/CryptoCoin": {
"description": "182 فایل CSV با OHLCV برای 26 کریپتو",
"symbols": ["BTC", "ETH", "BNB", "SOL", "ADA", "XRP", "DOT", "DOGE",
"AVAX", "MATIC", "LINK", "UNI", "ATOM", "LTC", "XMR"],
"timeframes": ["1m", "5m", "15m", "30m", "1h", "4h", "1d"],
"columns": ["timestamp", "open", "high", "low", "close", "volume"],
"date_range": "2017-present"
},
"WinkingFace/CryptoLM-Bitcoin-BTC-USDT": {
"description": "داده تاریخی Bitcoin با indicators",
"symbols": ["BTC"],
"timeframes": ["1h"],
"columns": ["timestamp", "open", "high", "low", "close", "volume", "rsi", "macd"],
"date_range": "2019-2023"
},
"sebdg/crypto_data": {
"description": "OHLCV + indicators برای 10 کریپتو",
"symbols": ["BTC", "ETH", "BNB", "ADA", "DOT", "LINK", "UNI", "AVAX", "MATIC", "SOL"],
"indicators": ["RSI", "MACD", "Bollinger Bands", "EMA", "SMA"],
"timeframes": ["1h", "4h", "1d"],
"date_range": "2020-present"
}
}
NEWS_DATASETS = {
"Kwaai/crypto-news": {
"description": "اخبار کریپتو با sentiment labels",
"size": "10,000+ news articles",
"languages": ["en"],
"date_range": "2020-2023"
},
"jacopoteneggi/crypto-news": {
"description": "اخبار روزانه کریپتو",
"size": "50,000+ articles",
"sources": ["CoinDesk", "CoinTelegraph", "Bitcoin Magazine"],
"date_range": "2018-2023"
}
}
def __init__(self):
self.cache = {}
self.cache_ttl = 3600 # 1 ساعت
def is_available(self) -> bool:
"""بررسی در دسترس بودن کتابخانه datasets"""
return DATASETS_AVAILABLE
async def load_crypto_ohlcv(
self,
symbol: str = "BTC",
timeframe: str = "1h",
limit: int = 1000,
dataset_name: str = "linxy/CryptoCoin"
) -> pd.DataFrame:
"""
بارگذاری OHLCV از Dataset
Args:
symbol: نماد کریپتو (BTC, ETH, ...)
timeframe: بازه زمانی (1m, 5m, 1h, 1d, ...)
limit: تعداد رکورد
dataset_name: نام dataset
Returns:
DataFrame شامل OHLCV
"""
if not DATASETS_AVAILABLE:
logger.error("datasets library not available")
return pd.DataFrame()
try:
# کلید cache
cache_key = f"{dataset_name}:{symbol}:{timeframe}:{limit}"
# بررسی cache
if cache_key in self.cache:
cached_data, cached_time = self.cache[cache_key]
if (datetime.now() - cached_time).total_seconds() < self.cache_ttl:
logger.info(f"Returning cached data for {cache_key}")
return cached_data
logger.info(f"Loading dataset {dataset_name} for {symbol}...")
# بارگذاری Dataset
# استفاده از streaming برای صرفهجویی در RAM
dataset = load_dataset(
dataset_name,
split="train",
streaming=True
)
# تبدیل به DataFrame (محدود به limit رکورد)
records = []
count = 0
for record in dataset:
# فیلتر بر اساس symbol (اگر فیلد symbol موجود باشد)
if "symbol" in record:
if record["symbol"].upper() != symbol.upper():
continue
records.append(record)
count += 1
if count >= limit:
break
df = pd.DataFrame(records)
# استانداردسازی ستونها
if not df.empty:
# تبدیل timestamp اگر رشته است
if "timestamp" in df.columns:
if df["timestamp"].dtype == "object":
df["timestamp"] = pd.to_datetime(df["timestamp"])
# مرتبسازی بر اساس timestamp
if "timestamp" in df.columns:
df = df.sort_values("timestamp", ascending=False)
# ذخیره در cache
self.cache[cache_key] = (df, datetime.now())
logger.info(f"Loaded {len(df)} records for {symbol}")
return df
except Exception as e:
logger.error(f"Error loading dataset: {e}")
return pd.DataFrame()
async def load_crypto_news(
self,
limit: int = 100,
dataset_name: str = "Kwaai/crypto-news"
) -> List[Dict[str, Any]]:
"""
بارگذاری اخبار کریپتو از Dataset
Args:
limit: تعداد خبر
dataset_name: نام dataset
Returns:
لیست اخبار
"""
if not DATASETS_AVAILABLE:
logger.error("datasets library not available")
return []
try:
logger.info(f"Loading news from {dataset_name}...")
# بارگذاری Dataset
dataset = load_dataset(
dataset_name,
split="train",
streaming=True
)
# استخراج اخبار
news_items = []
count = 0
for record in dataset:
news_item = {
"title": record.get("title", ""),
"content": record.get("text", record.get("content", "")),
"url": record.get("url", ""),
"source": record.get("source", "HuggingFace Dataset"),
"published_at": record.get("date", record.get("published_at", "")),
"sentiment": record.get("sentiment", "neutral")
}
news_items.append(news_item)
count += 1
if count >= limit:
break
logger.info(f"Loaded {len(news_items)} news articles")
return news_items
except Exception as e:
logger.error(f"Error loading news: {e}")
return []
async def get_historical_prices(
self,
symbol: str,
days: int = 30,
timeframe: str = "1h"
) -> Dict[str, Any]:
"""
دریافت قیمتهای تاریخی
Args:
symbol: نماد کریپتو
days: تعداد روز گذشته
timeframe: بازه زمانی
Returns:
Dict شامل داده قیمت و آمار
"""
# محاسبه تعداد رکورد مورد نیاز
records_per_day = {
"1m": 1440,
"5m": 288,
"15m": 96,
"30m": 48,
"1h": 24,
"4h": 6,
"1d": 1
}
limit = records_per_day.get(timeframe, 24) * days
# بارگذاری داده
df = await self.load_crypto_ohlcv(symbol, timeframe, limit)
if df.empty:
return {
"status": "error",
"error": "No data available",
"symbol": symbol
}
# محاسبه آمار
latest_close = float(df.iloc[0]["close"]) if "close" in df.columns else 0
earliest_close = float(df.iloc[-1]["close"]) if "close" in df.columns else 0
price_change = latest_close - earliest_close
price_change_pct = (price_change / earliest_close * 100) if earliest_close > 0 else 0
high_price = float(df["high"].max()) if "high" in df.columns else 0
low_price = float(df["low"].min()) if "low" in df.columns else 0
avg_volume = float(df["volume"].mean()) if "volume" in df.columns else 0
return {
"status": "success",
"symbol": symbol,
"timeframe": timeframe,
"days": days,
"records": len(df),
"latest_price": latest_close,
"price_change": price_change,
"price_change_pct": price_change_pct,
"high": high_price,
"low": low_price,
"avg_volume": avg_volume,
"data": df.to_dict(orient="records")[:100], # محدود به 100 رکورد اول
"source": "HuggingFace Dataset",
"is_free": True
}
def get_available_datasets(self) -> Dict[str, Any]:
"""
لیست Datasetهای موجود
"""
return {
"crypto_data": {
"total": len(self.CRYPTO_DATASETS),
"datasets": self.CRYPTO_DATASETS
},
"news_data": {
"total": len(self.NEWS_DATASETS),
"datasets": self.NEWS_DATASETS
},
"library_available": DATASETS_AVAILABLE,
"installation": "pip install datasets" if not DATASETS_AVAILABLE else "✅ Installed"
}
def get_supported_symbols(self) -> List[str]:
"""
لیست نمادهای پشتیبانی شده
"""
symbols = set()
for dataset_info in self.CRYPTO_DATASETS.values():
symbols.update(dataset_info.get("symbols", []))
return sorted(list(symbols))
def get_supported_timeframes(self) -> List[str]:
"""
لیست بازههای زمانی پشتیبانی شده
"""
timeframes = set()
for dataset_info in self.CRYPTO_DATASETS.values():
timeframes.update(dataset_info.get("timeframes", []))
return sorted(list(timeframes))
# ===== توابع کمکی =====
async def quick_price_data(
symbol: str = "BTC",
days: int = 7
) -> Dict[str, Any]:
"""
دریافت سریع داده قیمت
Args:
symbol: نماد کریپتو
days: تعداد روز
Returns:
Dict شامل داده و آمار
"""
service = HFDatasetService()
return await service.get_historical_prices(symbol, days)
async def quick_crypto_news(limit: int = 10) -> List[Dict[str, Any]]:
"""
دریافت سریع اخبار کریپتو
Args:
limit: تعداد خبر
Returns:
لیست اخبار
"""
service = HFDatasetService()
return await service.load_crypto_news(limit)
# ===== مثال استفاده =====
if __name__ == "__main__":
async def test_service():
"""تست سرویس"""
print("🧪 Testing HF Dataset Service...")
service = HFDatasetService()
# بررسی در دسترس بودن
print(f"\n1️⃣ Library available: {service.is_available()}")
if not service.is_available():
print(" ⚠️ Install with: pip install datasets")
return
# لیست datasetها
print("\n2️⃣ Available Datasets:")
datasets = service.get_available_datasets()
print(f" Crypto datasets: {datasets['crypto_data']['total']}")
print(f" News datasets: {datasets['news_data']['total']}")
# نمادهای پشتیبانی شده
print("\n3️⃣ Supported Symbols:")
symbols = service.get_supported_symbols()
print(f" {', '.join(symbols[:10])}...")
# تست بارگذاری قیمت
print("\n4️⃣ Loading BTC price data...")
try:
result = await service.get_historical_prices("BTC", days=7, timeframe="1h")
if result["status"] == "success":
print(f" ✅ Loaded {result['records']} records")
print(f" Latest price: ${result['latest_price']:,.2f}")
print(f" Change: {result['price_change_pct']:+.2f}%")
print(f" High: ${result['high']:,.2f}")
print(f" Low: ${result['low']:,.2f}")
else:
print(f" ❌ Error: {result.get('error')}")
except Exception as e:
print(f" ❌ Exception: {e}")
# تست بارگذاری اخبار
print("\n5️⃣ Loading crypto news...")
try:
news = await service.load_crypto_news(limit=5)
print(f" ✅ Loaded {len(news)} news articles")
for i, article in enumerate(news[:3], 1):
print(f" {i}. {article['title'][:60]}...")
except Exception as e:
print(f" ❌ Exception: {e}")
print("\n✅ Testing complete!")
import asyncio
asyncio.run(test_service())
|