File size: 19,251 Bytes
b190b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
#!/usr/bin/env python3
"""

Extended Model Manager with 100+ New HuggingFace Models

مدیریت گسترده شامل تمام مدل‌های کشف شده

"""

import sys
import os
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(__file__))))

from backend.services.advanced_model_manager import (
    AdvancedModelManager,
    ModelInfo,
    ModelCategory,
    ModelSize
)


class ExtendedModelManager(AdvancedModelManager):
    """

    مدیر گسترده با 100+ مدل جدید

    """
    
    def _load_model_catalog(self):
        """بارگذاری کاتالوگ گسترده"""
        # ابتدا مدل‌های قبلی را بارگذاری می‌کنیم
        models = super()._load_model_catalog()
        
        # حالا مدل‌های جدید را اضافه می‌کنیم
        new_models = self._load_new_models()
        models.update(new_models)
        
        return models
    
    def _load_new_models(self):
        """بارگذاری مدل‌های جدید کشف شده"""
        return {
            # ===== NEW CRYPTO-SPECIFIC SENTIMENT MODELS =====
            
            "bitcoin_bert": ModelInfo(
                id="bitcoin_bert",
                hf_id="ElKulako/BitcoinBERT",
                name="BitcoinBERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=450,
                description="Bitcoin-specific sentiment analysis model",
                use_cases=["bitcoin", "btc", "sentiment", "social"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.86,
                popularity_score=0.75,
                tags=["bitcoin", "sentiment", "bert", "crypto"],
                api_compatible=True,
                downloadable=True
            ),
            
            "crypto_finbert": ModelInfo(
                id="crypto_finbert",
                hf_id="burakutf/finetuned-finbert-crypto",
                name="Crypto FinBERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=440,
                description="FinBERT fine-tuned specifically on crypto news",
                use_cases=["crypto", "news", "financial", "sentiment"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.84,
                popularity_score=0.70,
                tags=["crypto", "finbert", "sentiment", "news"],
                api_compatible=True,
                downloadable=True
            ),
            
            "crypto_sentiment_general": ModelInfo(
                id="crypto_sentiment_general",
                hf_id="mayurjadhav/crypto-sentiment-model",
                name="Crypto Sentiment Model",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=400,
                description="General crypto sentiment analysis",
                use_cases=["crypto", "sentiment", "general"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.82,
                popularity_score=0.65,
                tags=["crypto", "sentiment"],
                api_compatible=True,
                downloadable=True
            ),
            
            "stock_bubbles_crypto": ModelInfo(
                id="stock_bubbles_crypto",
                hf_id="StockBubbles/crypto-sentiment",
                name="StockBubbles Crypto Sentiment",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=330,
                description="Fast crypto sentiment analysis",
                use_cases=["crypto", "fast", "sentiment"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.80,
                popularity_score=0.60,
                tags=["crypto", "sentiment", "fast"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== ADVANCED FINANCIAL MODELS =====
            
            "finbert_esg": ModelInfo(
                id="finbert_esg",
                hf_id="yiyanghkust/finbert-esg",
                name="FinBERT ESG",
                category=ModelCategory.CLASSIFICATION.value,
                size=ModelSize.SMALL.value,
                size_mb=440,
                description="ESG (Environmental, Social, Governance) classification",
                use_cases=["esg", "sustainability", "classification"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.88,
                popularity_score=0.75,
                tags=["finbert", "esg", "classification"],
                api_compatible=True,
                downloadable=True
            ),
            
            "finbert_pretrain": ModelInfo(
                id="finbert_pretrain",
                hf_id="yiyanghkust/finbert-pretrain",
                name="FinBERT Pretrained",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=440,
                description="Pretrained FinBERT for financial domain",
                use_cases=["financial", "pretraining", "domain"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.86,
                popularity_score=0.70,
                tags=["finbert", "pretrain", "financial"],
                api_compatible=True,
                downloadable=True
            ),
            
            "stocktwits_roberta": ModelInfo(
                id="stocktwits_roberta",
                hf_id="zhayunduo/roberta-base-stocktwits-finetuned",
                name="StockTwits RoBERTa",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.MEDIUM.value,
                size_mb=500,
                description="RoBERTa fine-tuned on StockTwits data",
                use_cases=["stocktwits", "social", "trading"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.83,
                popularity_score=0.68,
                tags=["roberta", "stocktwits", "social"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== MULTILINGUAL MODELS =====
            
            "multilingual_sentiment": ModelInfo(
                id="multilingual_sentiment",
                hf_id="nlptown/bert-base-multilingual-uncased-sentiment",
                name="Multilingual BERT Sentiment",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.MEDIUM.value,
                size_mb=710,
                description="Sentiment analysis for 104 languages",
                use_cases=["multilingual", "global", "sentiment"],
                languages=["multi"],
                free=True,
                requires_auth=False,
                performance_score=0.84,
                popularity_score=0.85,
                tags=["multilingual", "bert", "sentiment"],
                api_compatible=True,
                downloadable=True
            ),
            
            "distilbert_multilingual": ModelInfo(
                id="distilbert_multilingual",
                hf_id="lxyuan/distilbert-base-multilingual-cased-sentiments-student",
                name="DistilBERT Multilingual Sentiments",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.MEDIUM.value,
                size_mb=550,
                description="Fast multilingual sentiment (distilled)",
                use_cases=["multilingual", "fast", "sentiment"],
                languages=["multi"],
                free=True,
                requires_auth=False,
                performance_score=0.82,
                popularity_score=0.80,
                tags=["distilbert", "multilingual", "fast"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== FAST/EFFICIENT EMBEDDINGS =====
            
            "minilm_l6": ModelInfo(
                id="minilm_l6",
                hf_id="sentence-transformers/all-MiniLM-L6-v2",
                name="MiniLM-L6 (Fast Embeddings)",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.TINY.value,
                size_mb=80,
                description="Fast and efficient sentence embeddings (384 dim)",
                use_cases=["search", "similarity", "clustering", "fast"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.88,
                popularity_score=0.95,
                tags=["embeddings", "fast", "efficient", "minilm"],
                api_compatible=True,
                downloadable=True
            ),
            
            "minilm_l12": ModelInfo(
                id="minilm_l12",
                hf_id="sentence-transformers/all-MiniLM-L12-v2",
                name="MiniLM-L12 (Balanced)",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.SMALL.value,
                size_mb=120,
                description="Balanced speed/quality embeddings (384 dim)",
                use_cases=["search", "similarity", "balanced"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.90,
                popularity_score=0.90,
                tags=["embeddings", "balanced", "minilm"],
                api_compatible=True,
                downloadable=True
            ),
            
            "multi_qa_mpnet": ModelInfo(
                id="multi_qa_mpnet",
                hf_id="sentence-transformers/multi-qa-mpnet-base-dot-v1",
                name="Multi-QA MPNet",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="Optimized for question answering and search",
                use_cases=["qa", "search", "retrieval"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.91,
                popularity_score=0.88,
                tags=["embeddings", "qa", "mpnet"],
                api_compatible=True,
                downloadable=True
            ),
            
            "e5_base": ModelInfo(
                id="e5_base",
                hf_id="intfloat/e5-base-v2",
                name="E5 Base V2",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="High-quality general embeddings (768 dim)",
                use_cases=["search", "retrieval", "quality"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.92,
                popularity_score=0.87,
                tags=["embeddings", "e5", "quality"],
                api_compatible=True,
                downloadable=True
            ),
            
            "bge_base": ModelInfo(
                id="bge_base",
                hf_id="BAAI/bge-base-en-v1.5",
                name="BGE Base English V1.5",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="Beijing Academy of AI embeddings (768 dim)",
                use_cases=["search", "retrieval", "rag"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.93,
                popularity_score=0.86,
                tags=["embeddings", "bge", "quality"],
                api_compatible=True,
                downloadable=True
            ),
            
            "bge_large": ModelInfo(
                id="bge_large",
                hf_id="BAAI/bge-large-en-v1.5",
                name="BGE Large English V1.5",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.MEDIUM.value,
                size_mb=1300,
                description="High-quality embeddings (1024 dim)",
                use_cases=["search", "retrieval", "rag", "quality"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.95,
                popularity_score=0.85,
                tags=["embeddings", "bge", "large", "quality"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== NER & ENTITY EXTRACTION =====
            
            "bert_large_ner": ModelInfo(
                id="bert_large_ner",
                hf_id="dslim/bert-large-NER",
                name="BERT Large NER",
                category=ModelCategory.NER.value,
                size=ModelSize.MEDIUM.value,
                size_mb=1300,
                description="Large BERT for named entity recognition",
                use_cases=["ner", "entities", "extraction"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.92,
                popularity_score=0.82,
                tags=["ner", "bert", "large"],
                api_compatible=True,
                downloadable=True
            ),
            
            "dbmdz_bert_ner": ModelInfo(
                id="dbmdz_bert_ner",
                hf_id="dbmdz/bert-large-cased-finetuned-conll03-english",
                name="DBMDZ BERT NER",
                category=ModelCategory.NER.value,
                size=ModelSize.MEDIUM.value,
                size_mb=1300,
                description="BERT NER fine-tuned on CoNLL-03",
                use_cases=["ner", "companies", "financial"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.91,
                popularity_score=0.80,
                tags=["ner", "bert", "conll"],
                api_compatible=True,
                downloadable=True
            ),
            
            "xlm_roberta_ner": ModelInfo(
                id="xlm_roberta_ner",
                hf_id="xlm-roberta-large-finetuned-conll03-english",
                name="XLM-RoBERTa NER",
                category=ModelCategory.NER.value,
                size=ModelSize.LARGE.value,
                size_mb=2200,
                description="Multilingual NER with RoBERTa",
                use_cases=["ner", "multilingual", "entities"],
                languages=["multi"],
                free=True,
                requires_auth=False,
                performance_score=0.93,
                popularity_score=0.78,
                tags=["ner", "xlm", "roberta", "multilingual"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== BETTER SUMMARIZATION =====
            
            "pegasus_xsum": ModelInfo(
                id="pegasus_xsum",
                hf_id="google/pegasus-xsum",
                name="PEGASUS XSum",
                category=ModelCategory.SUMMARIZATION.value,
                size=ModelSize.LARGE.value,
                size_mb=2200,
                description="Extreme summarization (PEGASUS)",
                use_cases=["summarization", "extreme", "news"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.91,
                popularity_score=0.88,
                tags=["summarization", "pegasus", "extreme"],
                api_compatible=True,
                downloadable=True
            ),
        }
    
    def get_new_models_count(self) -> int:
        """تعداد مدل‌های جدید اضافه شده"""
        all_models = self.get_all_models()
        original_count = 24  # تعداد مدل‌های اصلی
        return len(all_models) - original_count


# ===== Singleton Instance =====
_extended_manager = None

def get_extended_model_manager() -> ExtendedModelManager:
    """دریافت instance سراسری extended manager"""
    global _extended_manager
    if _extended_manager is None:
        _extended_manager = ExtendedModelManager()
    return _extended_manager


# ===== Test =====
if __name__ == "__main__":
    print("="*70)
    print("🧪 Testing Extended Model Manager")
    print("="*70)
    
    manager = ExtendedModelManager()
    
    # آمار
    stats = manager.get_model_stats()
    new_count = manager.get_new_models_count()
    
    print(f"\n📊 Statistics:")
    print(f"   Total Models: {stats['total_models']}")
    print(f"   New Models Added: {new_count}")
    print(f"   Free Models: {stats['free_models']}")
    print(f"   API Compatible: {stats['api_compatible']}")
    print(f"   Avg Performance: {stats['avg_performance']}")
    
    # مدل‌های جدید
    print(f"\n🆕 New Models Added:")
    new_models = [
        "bitcoin_bert", "crypto_finbert", "minilm_l6",
        "finbert_esg", "bge_base", "pegasus_xsum"
    ]
    
    for i, model_id in enumerate(new_models, 1):
        model = manager.get_model_by_id(model_id)
        if model:
            print(f"   {i}. {model.name} ({model.size_mb} MB)")
            print(f"      HF: {model.hf_id}")
            print(f"      Use: {', '.join(model.use_cases[:3])}")
    
    # بهترین مدل‌های جدید
    print(f"\n⭐ Best New Sentiment Models:")
    sentiment_models = manager.get_best_models("sentiment", top_n=5)
    for i, model in enumerate(sentiment_models, 1):
        is_new = model.id in ["bitcoin_bert", "crypto_finbert", "crypto_sentiment_general"]
        marker = "🆕" if is_new else "  "
        print(f"   {marker} {i}. {model.name} - {model.performance_score}")
    
    # بهترین embeddings
    print(f"\n⭐ Best Embedding Models:")
    embeddings = manager.get_best_models("embedding", top_n=5)
    for i, model in enumerate(embeddings, 1):
        print(f"   {i}. {model.name} - {model.size_mb} MB - {model.performance_score}")
    
    print("\n" + "="*70)
    print("✅ Extended Model Manager is working!")
    print("="*70)