File size: 31,738 Bytes
b190b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
#!/usr/bin/env python3
"""

Advanced Model Manager

مدیریت پیشرفته مدل‌های AI با قابلیت filtering، ranking، و recommendation

"""

from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, asdict
from enum import Enum
import json
import logging

logger = logging.getLogger(__name__)


class ModelCategory(Enum):
    """دسته‌بندی مدل‌ها"""
    SENTIMENT = "sentiment"
    GENERATION = "generation"
    TRADING = "trading"
    SUMMARIZATION = "summarization"
    NER = "ner"
    QA = "question_answering"
    CLASSIFICATION = "classification"
    EMBEDDING = "embedding"
    TRANSLATION = "translation"
    PRICE_PREDICTION = "price_prediction"


class ModelSize(Enum):
    """اندازه مدل‌ها"""
    TINY = "tiny"      # <100 MB
    SMALL = "small"    # 100-500 MB
    MEDIUM = "medium"  # 500MB-1GB
    LARGE = "large"    # 1-3GB
    XLARGE = "xlarge"  # >3GB


@dataclass
class ModelInfo:
    """اطلاعات کامل یک مدل AI"""
    id: str
    hf_id: str
    name: str
    category: str  # ModelCategory value
    size: str      # ModelSize value
    size_mb: int
    description: str
    use_cases: List[str]
    languages: List[str]
    free: bool
    requires_auth: bool
    performance_score: float  # 0-1
    popularity_score: float   # 0-1
    tags: List[str]
    api_compatible: bool = True
    downloadable: bool = True
    
    def to_dict(self) -> Dict[str, Any]:
        """تبدیل به dict"""
        return asdict(self)


class AdvancedModelManager:
    """

    مدیر پیشرفته مدل‌های AI

    

    قابلیت‌ها:

    - Filtering بر اساس category, size, language

    - Ranking بر اساس performance

    - Recommendation بر اساس use case

    - Search در تمام فیلدها

    - Stats و Analytics

    """
    
    def __init__(self):
        self.models = self._load_model_catalog()
        logger.info(f"Loaded {len(self.models)} models into catalog")
    
    def _load_model_catalog(self) -> Dict[str, ModelInfo]:
        """بارگذاری کاتالوگ کامل مدل‌ها"""
        return {
            # ===== SENTIMENT MODELS =====
            
            "cryptobert": ModelInfo(
                id="cryptobert",
                hf_id="kk08/CryptoBERT",
                name="CryptoBERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="Binary sentiment analysis optimized for crypto texts",
                use_cases=["social_media", "news", "tweets", "reddit"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.85,
                popularity_score=0.90,
                tags=["crypto", "sentiment", "bert", "binary"],
                api_compatible=True,
                downloadable=True
            ),
            
            "elkulako_cryptobert": ModelInfo(
                id="elkulako_cryptobert",
                hf_id="ElKulako/cryptobert",
                name="ElKulako CryptoBERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=450,
                description="3-class crypto sentiment (bullish/neutral/bearish)",
                use_cases=["twitter", "reddit", "social", "forums"],
                languages=["en"],
                free=True,
                requires_auth=True,
                performance_score=0.88,
                popularity_score=0.85,
                tags=["crypto", "social", "sentiment", "3-class"],
                api_compatible=True,
                downloadable=True
            ),
            
            "finbert": ModelInfo(
                id="finbert",
                hf_id="ProsusAI/finbert",
                name="FinBERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=440,
                description="Financial sentiment analysis (positive/negative/neutral)",
                use_cases=["news", "articles", "reports", "earnings"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.90,
                popularity_score=0.95,
                tags=["finance", "sentiment", "bert", "financial"],
                api_compatible=True,
                downloadable=True
            ),
            
            "finbert_tone": ModelInfo(
                id="finbert_tone",
                hf_id="yiyanghkust/finbert-tone",
                name="FinBERT Tone",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=440,
                description="Financial tone analysis for earnings calls and reports",
                use_cases=["earnings_calls", "reports", "financial_documents"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.87,
                popularity_score=0.80,
                tags=["finance", "tone", "bert"],
                api_compatible=True,
                downloadable=True
            ),
            
            "distilroberta_financial": ModelInfo(
                id="distilroberta_financial",
                hf_id="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
                name="DistilRoBERTa Financial",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=330,
                description="Fast financial sentiment analysis with DistilRoBERTa",
                use_cases=["news", "real_time", "streaming"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.83,
                popularity_score=0.75,
                tags=["finance", "sentiment", "distil", "fast"],
                api_compatible=True,
                downloadable=True
            ),
            
            "fintwit_bert": ModelInfo(
                id="fintwit_bert",
                hf_id="StephanAkkerman/FinTwitBERT-sentiment",
                name="FinTwitBERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=440,
                description="Financial Twitter sentiment analysis",
                use_cases=["twitter", "social", "fintwit"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.86,
                popularity_score=0.82,
                tags=["finance", "twitter", "sentiment"],
                api_compatible=True,
                downloadable=True
            ),
            
            "twitter_roberta": ModelInfo(
                id="twitter_roberta",
                hf_id="cardiffnlp/twitter-roberta-base-sentiment-latest",
                name="Twitter RoBERTa",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.MEDIUM.value,
                size_mb=500,
                description="State-of-the-art Twitter sentiment analysis",
                use_cases=["twitter", "social_media", "tweets"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.89,
                popularity_score=0.92,
                tags=["twitter", "sentiment", "roberta", "social"],
                api_compatible=True,
                downloadable=True
            ),
            
            "xlm_roberta_sentiment": ModelInfo(
                id="xlm_roberta_sentiment",
                hf_id="cardiffnlp/twitter-xlm-roberta-base-sentiment",
                name="XLM-RoBERTa Sentiment",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.MEDIUM.value,
                size_mb=1100,
                description="Multilingual sentiment (100+ languages)",
                use_cases=["global", "multilingual", "international"],
                languages=["multi"],
                free=True,
                requires_auth=False,
                performance_score=0.87,
                popularity_score=0.88,
                tags=["multilingual", "sentiment", "roberta", "global"],
                api_compatible=True,
                downloadable=True
            ),
            
            "bertweet_sentiment": ModelInfo(
                id="bertweet_sentiment",
                hf_id="finiteautomata/bertweet-base-sentiment-analysis",
                name="BERTweet Sentiment",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.MEDIUM.value,
                size_mb=540,
                description="BERT trained specifically on tweets",
                use_cases=["twitter", "social", "monitoring"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.85,
                popularity_score=0.80,
                tags=["twitter", "bert", "sentiment"],
                api_compatible=True,
                downloadable=True
            ),
            
            "crypto_news_bert": ModelInfo(
                id="crypto_news_bert",
                hf_id="mathugo/crypto_news_bert",
                name="Crypto News BERT",
                category=ModelCategory.SENTIMENT.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="BERT fine-tuned on crypto news articles",
                use_cases=["news", "articles", "crypto_media"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.84,
                popularity_score=0.70,
                tags=["crypto", "news", "bert"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== GENERATION MODELS =====
            
            "crypto_gpt_o3": ModelInfo(
                id="crypto_gpt_o3",
                hf_id="OpenC/crypto-gpt-o3-mini",
                name="Crypto GPT-O3 Mini",
                category=ModelCategory.GENERATION.value,
                size=ModelSize.MEDIUM.value,
                size_mb=850,
                description="Crypto/DeFi text generation model",
                use_cases=["analysis", "reports", "content", "explanation"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.80,
                popularity_score=0.70,
                tags=["crypto", "generation", "gpt", "defi"],
                api_compatible=True,
                downloadable=True
            ),
            
            "fingpt": ModelInfo(
                id="fingpt",
                hf_id="oliverwang15/FinGPT",
                name="FinGPT",
                category=ModelCategory.GENERATION.value,
                size=ModelSize.LARGE.value,
                size_mb=1500,
                description="Financial text generation and analysis",
                use_cases=["reports", "analysis", "financial_content"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.82,
                popularity_score=0.75,
                tags=["finance", "generation", "gpt"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== TRADING MODELS =====
            
            "crypto_trader_lm": ModelInfo(
                id="crypto_trader_lm",
                hf_id="agarkovv/CryptoTrader-LM",
                name="CryptoTrader LM",
                category=ModelCategory.TRADING.value,
                size=ModelSize.SMALL.value,
                size_mb=450,
                description="BTC/ETH trading signals (buy/sell/hold)",
                use_cases=["trading", "signals", "predictions", "analysis"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.75,
                popularity_score=0.65,
                tags=["trading", "signals", "crypto", "predictions"],
                api_compatible=True,
                downloadable=True
            ),
            
            "crypto_price_predictor": ModelInfo(
                id="crypto_price_predictor",
                hf_id="mrm8488/bert-mini-finetuned-crypto-price-prediction",
                name="Crypto Price Predictor",
                category=ModelCategory.PRICE_PREDICTION.value,
                size=ModelSize.TINY.value,
                size_mb=60,
                description="Price trend prediction for cryptocurrencies",
                use_cases=["prediction", "forecasting", "trends"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.70,
                popularity_score=0.60,
                tags=["prediction", "price", "trends"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== SUMMARIZATION MODELS =====
            
            "crypto_news_summarizer": ModelInfo(
                id="crypto_news_summarizer",
                hf_id="FurkanGozukara/Crypto-Financial-News-Summarizer",
                name="Crypto News Summarizer",
                category=ModelCategory.SUMMARIZATION.value,
                size=ModelSize.MEDIUM.value,
                size_mb=1200,
                description="Summarize crypto and financial news articles",
                use_cases=["news", "digest", "reports", "articles"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.82,
                popularity_score=0.75,
                tags=["summarization", "news", "crypto"],
                api_compatible=True,
                downloadable=True
            ),
            
            "financial_summarizer_pegasus": ModelInfo(
                id="financial_summarizer_pegasus",
                hf_id="human-centered-summarization/financial-summarization-pegasus",
                name="Financial Summarizer (PEGASUS)",
                category=ModelCategory.SUMMARIZATION.value,
                size=ModelSize.LARGE.value,
                size_mb=2300,
                description="High-quality financial document summarization",
                use_cases=["reports", "documents", "earnings", "filings"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.88,
                popularity_score=0.80,
                tags=["summarization", "finance", "pegasus"],
                api_compatible=True,
                downloadable=True
            ),
            
            "bart_large_cnn": ModelInfo(
                id="bart_large_cnn",
                hf_id="facebook/bart-large-cnn",
                name="BART Large CNN",
                category=ModelCategory.SUMMARIZATION.value,
                size=ModelSize.LARGE.value,
                size_mb=1600,
                description="General-purpose news summarization",
                use_cases=["news", "articles", "blogs", "content"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.90,
                popularity_score=0.95,
                tags=["summarization", "bart", "news"],
                api_compatible=True,
                downloadable=True
            ),
            
            "t5_base_summarization": ModelInfo(
                id="t5_base_summarization",
                hf_id="t5-base",
                name="T5 Base",
                category=ModelCategory.SUMMARIZATION.value,
                size=ModelSize.MEDIUM.value,
                size_mb=850,
                description="Flexible text-to-text model for summarization",
                use_cases=["general", "flexible", "any_text"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.85,
                popularity_score=0.90,
                tags=["summarization", "t5", "flexible"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== NER MODELS =====
            
            "bert_base_ner": ModelInfo(
                id="bert_base_ner",
                hf_id="dslim/bert-base-NER",
                name="BERT Base NER",
                category=ModelCategory.NER.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="Named Entity Recognition for financial entities",
                use_cases=["entities", "extraction", "companies", "tickers"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.88,
                popularity_score=0.85,
                tags=["ner", "entities", "bert"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== Q&A MODELS =====
            
            "roberta_squad2": ModelInfo(
                id="roberta_squad2",
                hf_id="deepset/roberta-base-squad2",
                name="RoBERTa SQuAD2",
                category=ModelCategory.QA.value,
                size=ModelSize.MEDIUM.value,
                size_mb=500,
                description="Question answering for any text",
                use_cases=["qa", "chatbot", "faq", "retrieval"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.90,
                popularity_score=0.92,
                tags=["qa", "roberta", "squad"],
                api_compatible=True,
                downloadable=True
            ),
            
            "bert_squad2": ModelInfo(
                id="bert_squad2",
                hf_id="deepset/bert-base-cased-squad2",
                name="BERT SQuAD2",
                category=ModelCategory.QA.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="Financial FAQ and Q&A",
                use_cases=["faq", "support", "chatbot"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.87,
                popularity_score=0.88,
                tags=["qa", "bert", "squad"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== EMBEDDING MODELS =====
            
            "sentence_bert_mpnet": ModelInfo(
                id="sentence_bert_mpnet",
                hf_id="sentence-transformers/all-mpnet-base-v2",
                name="Sentence-BERT MPNet",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.SMALL.value,
                size_mb=420,
                description="High-quality sentence embeddings",
                use_cases=["search", "similarity", "clustering", "retrieval"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.92,
                popularity_score=0.95,
                tags=["embeddings", "sentence", "bert"],
                api_compatible=True,
                downloadable=True
            ),
            
            "e5_large_v2": ModelInfo(
                id="e5_large_v2",
                hf_id="intfloat/e5-large-v2",
                name="E5 Large V2",
                category=ModelCategory.EMBEDDING.value,
                size=ModelSize.MEDIUM.value,
                size_mb=1300,
                description="State-of-the-art embeddings",
                use_cases=["search", "retrieval", "rag", "semantic"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.94,
                popularity_score=0.90,
                tags=["embeddings", "e5", "search"],
                api_compatible=True,
                downloadable=True
            ),
            
            # ===== CLASSIFICATION MODELS =====
            
            "bart_mnli": ModelInfo(
                id="bart_mnli",
                hf_id="facebook/bart-large-mnli",
                name="BART MNLI",
                category=ModelCategory.CLASSIFICATION.value,
                size=ModelSize.LARGE.value,
                size_mb=1600,
                description="Zero-shot topic classification",
                use_cases=["classification", "topics", "zero_shot"],
                languages=["en"],
                free=True,
                requires_auth=False,
                performance_score=0.89,
                popularity_score=0.92,
                tags=["classification", "bart", "zero_shot"],
                api_compatible=True,
                downloadable=True
            ),
        }
    
    # ===== QUERY METHODS =====
    
    def get_all_models(self) -> List[ModelInfo]:
        """دریافت تمام مدل‌ها"""
        return list(self.models.values())
    
    def get_model_by_id(self, model_id: str) -> Optional[ModelInfo]:
        """دریافت مدل بر اساس ID"""
        return self.models.get(model_id)
    
    def filter_models(

        self,

        category: Optional[str] = None,

        size: Optional[str] = None,

        max_size_mb: Optional[int] = None,

        language: Optional[str] = None,

        free_only: bool = True,

        no_auth: bool = True,

        min_performance: float = 0.0,

        api_compatible: Optional[bool] = None,

        tags: Optional[List[str]] = None

    ) -> List[ModelInfo]:
        """

        فیلتر کردن مدل‌ها بر اساس معیارهای مختلف

        """
        filtered = self.get_all_models()
        
        if category:
            filtered = [m for m in filtered if m.category == category]
        
        if size:
            filtered = [m for m in filtered if m.size == size]
        
        if max_size_mb:
            filtered = [m for m in filtered if m.size_mb <= max_size_mb]
        
        if language:
            filtered = [
                m for m in filtered 
                if language in m.languages or "multi" in m.languages
            ]
        
        if free_only:
            filtered = [m for m in filtered if m.free]
        
        if no_auth:
            filtered = [m for m in filtered if not m.requires_auth]
        
        if min_performance > 0:
            filtered = [m for m in filtered if m.performance_score >= min_performance]
        
        if api_compatible is not None:
            filtered = [m for m in filtered if m.api_compatible == api_compatible]
        
        if tags:
            filtered = [
                m for m in filtered 
                if any(tag in m.tags for tag in tags)
            ]
        
        return filtered
    
    def get_best_models(

        self,

        category: str,

        top_n: int = 3,

        max_size_mb: Optional[int] = None

    ) -> List[ModelInfo]:
        """

        دریافت بهترین مدل‌ها بر اساس performance

        """
        filtered = self.filter_models(
            category=category,
            max_size_mb=max_size_mb
        )
        
        # مرتب‌سازی بر اساس performance
        sorted_models = sorted(
            filtered,
            key=lambda m: (m.performance_score, m.popularity_score),
            reverse=True
        )
        
        return sorted_models[:top_n]
    
    def recommend_models(

        self,

        use_case: str,

        max_models: int = 5,

        max_size_mb: Optional[int] = None

    ) -> List[ModelInfo]:
        """

        پیشنهاد مدل‌ها بر اساس use case

        """
        all_models = self.get_all_models()
        
        # فیلتر بر اساس use case
        relevant = [
            m for m in all_models
            if use_case in m.use_cases or any(use_case in uc for uc in m.use_cases)
        ]
        
        # فیلتر size
        if max_size_mb:
            relevant = [m for m in relevant if m.size_mb <= max_size_mb]
        
        # مرتب‌سازی بر اساس relevance و performance
        sorted_models = sorted(
            relevant,
            key=lambda m: (m.performance_score * m.popularity_score),
            reverse=True
        )
        
        return sorted_models[:max_models]
    
    def search_models(self, query: str) -> List[ModelInfo]:
        """

        جستجو در تمام فیلدهای مدل‌ها

        """
        query_lower = query.lower()
        all_models = self.get_all_models()
        
        results = []
        for model in all_models:
            # جستجو در فیلدهای مختلف
            if (
                query_lower in model.name.lower()
                or query_lower in model.description.lower()
                or any(query_lower in tag for tag in model.tags)
                or any(query_lower in uc for uc in model.use_cases)
                or query_lower in model.hf_id.lower()
            ):
                results.append(model)
        
        # مرتب‌سازی بر اساس relevance
        return sorted(
            results,
            key=lambda m: (m.performance_score, m.popularity_score),
            reverse=True
        )
    
    def get_model_stats(self) -> Dict[str, Any]:
        """آمار کامل مدل‌ها"""
        all_models = self.get_all_models()
        
        # آمار بر اساس category
        by_category = {}
        for cat in ModelCategory:
            count = len([m for m in all_models if m.category == cat.value])
            by_category[cat.value] = count
        
        # آمار بر اساس size
        by_size = {}
        for size in ModelSize:
            count = len([m for m in all_models if m.size == size.value])
            by_size[size.value] = count
        
        # آمار tags
        all_tags = {}
        for model in all_models:
            for tag in model.tags:
                all_tags[tag] = all_tags.get(tag, 0) + 1
        
        # Top tags
        top_tags = sorted(all_tags.items(), key=lambda x: x[1], reverse=True)[:10]
        
        return {
            "total_models": len(all_models),
            "by_category": by_category,
            "by_size": by_size,
            "free_models": len([m for m in all_models if m.free]),
            "no_auth_models": len([m for m in all_models if not m.requires_auth]),
            "api_compatible": len([m for m in all_models if m.api_compatible]),
            "downloadable": len([m for m in all_models if m.downloadable]),
            "avg_performance": round(
                sum(m.performance_score for m in all_models) / len(all_models), 2
            ),
            "avg_popularity": round(
                sum(m.popularity_score for m in all_models) / len(all_models), 2
            ),
            "total_size_gb": round(sum(m.size_mb for m in all_models) / 1024, 2),
            "top_tags": [{"tag": tag, "count": count} for tag, count in top_tags],
            "languages_supported": list(set(
                lang for m in all_models for lang in m.languages
            ))
        }
    
    def get_categories(self) -> List[Dict[str, Any]]:
        """لیست categories با آمار"""
        all_models = self.get_all_models()
        
        categories = []
        for cat in ModelCategory:
            models_in_cat = [m for m in all_models if m.category == cat.value]
            if models_in_cat:
                categories.append({
                    "id": cat.value,
                    "name": cat.name,
                    "count": len(models_in_cat),
                    "avg_performance": round(
                        sum(m.performance_score for m in models_in_cat) / len(models_in_cat),
                        2
                    ),
                    "models": [m.id for m in models_in_cat[:5]]  # Top 5
                })
        
        return sorted(categories, key=lambda x: x["count"], reverse=True)
    
    def export_catalog_json(self, filepath: str):
        """Export کردن کاتالوگ به JSON"""
        catalog = {
            "models": [m.to_dict() for m in self.get_all_models()],
            "stats": self.get_model_stats(),
            "categories": self.get_categories()
        }
        
        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(catalog, f, indent=2, ensure_ascii=False)
        
        logger.info(f"Exported catalog to {filepath}")


# ===== Singleton Instance =====
_model_manager = None

def get_model_manager() -> AdvancedModelManager:
    """دریافت instance سراسری model manager"""
    global _model_manager
    if _model_manager is None:
        _model_manager = AdvancedModelManager()
    return _model_manager


# ===== Usage Examples =====
if __name__ == "__main__":
    # ایجاد manager
    manager = AdvancedModelManager()
    
    print("=== Model Manager Test ===\n")
    
    # آمار کلی
    stats = manager.get_model_stats()
    print(f"📊 Total Models: {stats['total_models']}")
    print(f"📊 Free Models: {stats['free_models']}")
    print(f"📊 API Compatible: {stats['api_compatible']}")
    print(f"📊 Avg Performance: {stats['avg_performance']}")
    print(f"📊 Total Size: {stats['total_size_gb']} GB\n")
    
    # بهترین مدل‌های sentiment
    print("🏆 Best Sentiment Models:")
    best_sentiment = manager.get_best_models("sentiment", top_n=3, max_size_mb=500)
    for i, model in enumerate(best_sentiment, 1):
        print(f"   {i}. {model.name} - {model.performance_score:.2f}")
    
    # توصیه بر اساس use case
    print("\n💡 Recommended for 'twitter':")
    recommended = manager.recommend_models("twitter", max_models=3)
    for i, model in enumerate(recommended, 1):
        print(f"   {i}. {model.name} - {model.description[:50]}...")
    
    # جستجو
    print("\n🔍 Search for 'crypto':")
    search_results = manager.search_models("crypto")[:3]
    for i, model in enumerate(search_results, 1):
        print(f"   {i}. {model.name} - {model.category}")
    
    # Export
    # manager.export_catalog_json("/workspace/model_catalog.json")
    print("\n✅ Test complete!")