""" User Profile module for LifeUnity AI Cognitive Twin System. Manages user data, preferences, and behavior tracking. """ import json import os from datetime import datetime from typing import Dict, List, Optional from pathlib import Path from app.utils.logger import get_logger logger = get_logger("UserProfile") class UserProfile: """User profile manager for the Cognitive Twin system.""" def __init__(self, user_id: str = "default_user", data_dir: str = "data"): """ Initialize user profile. Args: user_id: Unique user identifier data_dir: Directory to store user data """ self.user_id = user_id self.data_dir = Path(data_dir) self.data_dir.mkdir(exist_ok=True) self.profile_file = self.data_dir / f"{user_id}_profile.json" self.profile = self._load_profile() logger.info(f"UserProfile initialized for user: {user_id}") def _load_profile(self) -> Dict: """Load user profile from file.""" try: if self.profile_file.exists(): with open(self.profile_file, 'r') as f: profile = json.load(f) logger.info(f"Loaded profile for user: {self.user_id}") return profile else: # Create default profile default_profile = self._create_default_profile() self._save_profile(default_profile) return default_profile except Exception as e: logger.error(f"Error loading profile: {str(e)}", exc_info=True) return self._create_default_profile() def _create_default_profile(self) -> Dict: """Create a default user profile.""" return { 'user_id': self.user_id, 'created_at': datetime.now().isoformat(), 'last_updated': datetime.now().isoformat(), 'baseline_data': { 'average_mood': 'neutral', 'stress_baseline': 50.0, 'productivity_baseline': 50.0, 'sleep_hours': 7.0 }, 'emotion_history': [], 'behavior_patterns': { 'peak_productivity_hours': [], 'common_stress_triggers': [], 'mood_trends': {} }, 'notes': [], 'preferences': { 'notification_enabled': True, 'data_retention_days': 90 } } def _save_profile(self, profile: Optional[Dict] = None): """Save user profile to file.""" try: if profile is None: profile = self.profile profile['last_updated'] = datetime.now().isoformat() with open(self.profile_file, 'w') as f: json.dump(profile, f, indent=2) logger.debug(f"Profile saved for user: {self.user_id}") except Exception as e: logger.error(f"Error saving profile: {str(e)}", exc_info=True) def update_baseline(self, baseline_data: Dict): """ Update user baseline data. Args: baseline_data: Dictionary with baseline metrics """ self.profile['baseline_data'].update(baseline_data) self._save_profile() logger.info(f"Updated baseline data for user: {self.user_id}") def add_emotion_record( self, emotion: str, confidence: float, timestamp: Optional[str] = None ): """ Add emotion record to history. Args: emotion: Detected emotion confidence: Confidence score timestamp: Optional timestamp (ISO format) """ if timestamp is None: timestamp = datetime.now().isoformat() record = { 'emotion': emotion, 'confidence': confidence, 'timestamp': timestamp } self.profile['emotion_history'].append(record) # Keep only recent records (last 1000) if len(self.profile['emotion_history']) > 1000: self.profile['emotion_history'] = self.profile['emotion_history'][-1000:] self._save_profile() logger.debug(f"Added emotion record: {emotion} ({confidence:.2f})") def get_emotion_history(self, limit: Optional[int] = None) -> List[Dict]: """ Get emotion history. Args: limit: Maximum number of records to return Returns: List of emotion records """ history = self.profile.get('emotion_history', []) if limit: return history[-limit:] return history def add_note(self, content: str, tags: Optional[List[str]] = None): """ Add a note to user profile. Args: content: Note content tags: Optional tags for the note """ note = { 'id': len(self.profile['notes']) + 1, 'content': content, 'timestamp': datetime.now().isoformat(), 'tags': tags or [] } self.profile['notes'].append(note) self._save_profile() logger.info(f"Added note for user: {self.user_id}") def get_notes(self, limit: Optional[int] = None) -> List[Dict]: """ Get user notes. Args: limit: Maximum number of notes to return Returns: List of notes """ notes = self.profile.get('notes', []) if limit: return notes[-limit:] return notes def update_behavior_pattern(self, pattern_type: str, data: any): """ Update behavior pattern. Args: pattern_type: Type of pattern (e.g., 'peak_productivity_hours') data: Pattern data """ self.profile['behavior_patterns'][pattern_type] = data self._save_profile() logger.info(f"Updated behavior pattern: {pattern_type}") def get_behavior_patterns(self) -> Dict: """Get all behavior patterns.""" return self.profile.get('behavior_patterns', {}) def calculate_stress_level(self) -> float: """ Calculate current stress level based on recent emotions. Returns: Stress level (0-100) """ recent_emotions = self.get_emotion_history(limit=10) if not recent_emotions: return 50.0 # Default neutral stress level # Stress weights for different emotions stress_weights = { 'angry': 90, 'fear': 85, 'disgust': 70, 'sad': 75, 'surprise': 40, 'happy': 20, 'neutral': 50 } total_stress = 0.0 for record in recent_emotions: emotion = record.get('emotion', 'neutral') confidence = record.get('confidence', 0.5) weight = stress_weights.get(emotion, 50) total_stress += weight * confidence avg_stress = total_stress / len(recent_emotions) return round(avg_stress, 2) def calculate_productivity_score(self) -> float: """ Calculate productivity score based on mood and patterns. Returns: Productivity score (0-100) """ recent_emotions = self.get_emotion_history(limit=10) if not recent_emotions: return 50.0 # Default neutral productivity # Productivity weights for different emotions productivity_weights = { 'happy': 90, 'neutral': 70, 'surprise': 60, 'sad': 40, 'angry': 30, 'fear': 35, 'disgust': 45 } total_productivity = 0.0 for record in recent_emotions: emotion = record.get('emotion', 'neutral') confidence = record.get('confidence', 0.5) weight = productivity_weights.get(emotion, 50) total_productivity += weight * confidence avg_productivity = total_productivity / len(recent_emotions) return round(avg_productivity, 2) def get_summary(self) -> Dict: """ Get user profile summary. Returns: Summary dictionary """ return { 'user_id': self.user_id, 'created_at': self.profile['created_at'], 'last_updated': self.profile['last_updated'], 'total_emotions_tracked': len(self.profile['emotion_history']), 'total_notes': len(self.profile['notes']), 'current_stress_level': self.calculate_stress_level(), 'current_productivity': self.calculate_productivity_score(), 'baseline_data': self.profile['baseline_data'] } # Global profile instance _profile = None def get_user_profile(user_id: str = "default_user") -> UserProfile: """ Get or create a user profile instance. Args: user_id: User identifier Returns: UserProfile instance """ global _profile if _profile is None or _profile.user_id != user_id: _profile = UserProfile(user_id) return _profile