File size: 9,533 Bytes
bf961d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
User Profile module for LifeUnity AI Cognitive Twin System.
Manages user data, preferences, and behavior tracking.
"""

import json
import os
from datetime import datetime
from typing import Dict, List, Optional
from pathlib import Path
from app.utils.logger import get_logger

logger = get_logger("UserProfile")


class UserProfile:
    """User profile manager for the Cognitive Twin system."""
    
    def __init__(self, user_id: str = "default_user", data_dir: str = "data"):
        """
        Initialize user profile.
        
        Args:
            user_id: Unique user identifier
            data_dir: Directory to store user data
        """
        self.user_id = user_id
        self.data_dir = Path(data_dir)
        self.data_dir.mkdir(exist_ok=True)
        
        self.profile_file = self.data_dir / f"{user_id}_profile.json"
        self.profile = self._load_profile()
        
        logger.info(f"UserProfile initialized for user: {user_id}")
    
    def _load_profile(self) -> Dict:
        """Load user profile from file."""
        try:
            if self.profile_file.exists():
                with open(self.profile_file, 'r') as f:
                    profile = json.load(f)
                logger.info(f"Loaded profile for user: {self.user_id}")
                return profile
            else:
                # Create default profile
                default_profile = self._create_default_profile()
                self._save_profile(default_profile)
                return default_profile
        except Exception as e:
            logger.error(f"Error loading profile: {str(e)}", exc_info=True)
            return self._create_default_profile()
    
    def _create_default_profile(self) -> Dict:
        """Create a default user profile."""
        return {
            'user_id': self.user_id,
            'created_at': datetime.now().isoformat(),
            'last_updated': datetime.now().isoformat(),
            'baseline_data': {
                'average_mood': 'neutral',
                'stress_baseline': 50.0,
                'productivity_baseline': 50.0,
                'sleep_hours': 7.0
            },
            'emotion_history': [],
            'behavior_patterns': {
                'peak_productivity_hours': [],
                'common_stress_triggers': [],
                'mood_trends': {}
            },
            'notes': [],
            'preferences': {
                'notification_enabled': True,
                'data_retention_days': 90
            }
        }
    
    def _save_profile(self, profile: Optional[Dict] = None):
        """Save user profile to file."""
        try:
            if profile is None:
                profile = self.profile
            
            profile['last_updated'] = datetime.now().isoformat()
            
            with open(self.profile_file, 'w') as f:
                json.dump(profile, f, indent=2)
            
            logger.debug(f"Profile saved for user: {self.user_id}")
            
        except Exception as e:
            logger.error(f"Error saving profile: {str(e)}", exc_info=True)
    
    def update_baseline(self, baseline_data: Dict):
        """
        Update user baseline data.
        
        Args:
            baseline_data: Dictionary with baseline metrics
        """
        self.profile['baseline_data'].update(baseline_data)
        self._save_profile()
        logger.info(f"Updated baseline data for user: {self.user_id}")
    
    def add_emotion_record(
        self,
        emotion: str,
        confidence: float,
        timestamp: Optional[str] = None
    ):
        """
        Add emotion record to history.
        
        Args:
            emotion: Detected emotion
            confidence: Confidence score
            timestamp: Optional timestamp (ISO format)
        """
        if timestamp is None:
            timestamp = datetime.now().isoformat()
        
        record = {
            'emotion': emotion,
            'confidence': confidence,
            'timestamp': timestamp
        }
        
        self.profile['emotion_history'].append(record)
        
        # Keep only recent records (last 1000)
        if len(self.profile['emotion_history']) > 1000:
            self.profile['emotion_history'] = self.profile['emotion_history'][-1000:]
        
        self._save_profile()
        logger.debug(f"Added emotion record: {emotion} ({confidence:.2f})")
    
    def get_emotion_history(self, limit: Optional[int] = None) -> List[Dict]:
        """
        Get emotion history.
        
        Args:
            limit: Maximum number of records to return
            
        Returns:
            List of emotion records
        """
        history = self.profile.get('emotion_history', [])
        if limit:
            return history[-limit:]
        return history
    
    def add_note(self, content: str, tags: Optional[List[str]] = None):
        """
        Add a note to user profile.
        
        Args:
            content: Note content
            tags: Optional tags for the note
        """
        note = {
            'id': len(self.profile['notes']) + 1,
            'content': content,
            'timestamp': datetime.now().isoformat(),
            'tags': tags or []
        }
        
        self.profile['notes'].append(note)
        self._save_profile()
        logger.info(f"Added note for user: {self.user_id}")
    
    def get_notes(self, limit: Optional[int] = None) -> List[Dict]:
        """
        Get user notes.
        
        Args:
            limit: Maximum number of notes to return
            
        Returns:
            List of notes
        """
        notes = self.profile.get('notes', [])
        if limit:
            return notes[-limit:]
        return notes
    
    def update_behavior_pattern(self, pattern_type: str, data: any):
        """
        Update behavior pattern.
        
        Args:
            pattern_type: Type of pattern (e.g., 'peak_productivity_hours')
            data: Pattern data
        """
        self.profile['behavior_patterns'][pattern_type] = data
        self._save_profile()
        logger.info(f"Updated behavior pattern: {pattern_type}")
    
    def get_behavior_patterns(self) -> Dict:
        """Get all behavior patterns."""
        return self.profile.get('behavior_patterns', {})
    
    def calculate_stress_level(self) -> float:
        """
        Calculate current stress level based on recent emotions.
        
        Returns:
            Stress level (0-100)
        """
        recent_emotions = self.get_emotion_history(limit=10)
        
        if not recent_emotions:
            return 50.0  # Default neutral stress level
        
        # Stress weights for different emotions
        stress_weights = {
            'angry': 90,
            'fear': 85,
            'disgust': 70,
            'sad': 75,
            'surprise': 40,
            'happy': 20,
            'neutral': 50
        }
        
        total_stress = 0.0
        for record in recent_emotions:
            emotion = record.get('emotion', 'neutral')
            confidence = record.get('confidence', 0.5)
            weight = stress_weights.get(emotion, 50)
            total_stress += weight * confidence
        
        avg_stress = total_stress / len(recent_emotions)
        return round(avg_stress, 2)
    
    def calculate_productivity_score(self) -> float:
        """
        Calculate productivity score based on mood and patterns.
        
        Returns:
            Productivity score (0-100)
        """
        recent_emotions = self.get_emotion_history(limit=10)
        
        if not recent_emotions:
            return 50.0  # Default neutral productivity
        
        # Productivity weights for different emotions
        productivity_weights = {
            'happy': 90,
            'neutral': 70,
            'surprise': 60,
            'sad': 40,
            'angry': 30,
            'fear': 35,
            'disgust': 45
        }
        
        total_productivity = 0.0
        for record in recent_emotions:
            emotion = record.get('emotion', 'neutral')
            confidence = record.get('confidence', 0.5)
            weight = productivity_weights.get(emotion, 50)
            total_productivity += weight * confidence
        
        avg_productivity = total_productivity / len(recent_emotions)
        return round(avg_productivity, 2)
    
    def get_summary(self) -> Dict:
        """
        Get user profile summary.
        
        Returns:
            Summary dictionary
        """
        return {
            'user_id': self.user_id,
            'created_at': self.profile['created_at'],
            'last_updated': self.profile['last_updated'],
            'total_emotions_tracked': len(self.profile['emotion_history']),
            'total_notes': len(self.profile['notes']),
            'current_stress_level': self.calculate_stress_level(),
            'current_productivity': self.calculate_productivity_score(),
            'baseline_data': self.profile['baseline_data']
        }


# Global profile instance
_profile = None


def get_user_profile(user_id: str = "default_user") -> UserProfile:
    """
    Get or create a user profile instance.
    
    Args:
        user_id: User identifier
        
    Returns:
        UserProfile instance
    """
    global _profile
    if _profile is None or _profile.user_id != user_id:
        _profile = UserProfile(user_id)
    return _profile