File size: 11,956 Bytes
bf961d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
"""
Memory Graph module for LifeUnity AI Cognitive Twin System.
Manages cognitive memory using embeddings and graph relationships.
"""
import json
import numpy as np
from typing import Dict, List, Optional, Tuple
from datetime import datetime
from pathlib import Path
import networkx as nx
from app.utils.embedder import get_embedder
from app.utils.logger import get_logger
from app.utils.preprocess import clean_text
logger = get_logger("MemoryGraph")
class MemoryGraph:
"""Memory graph manager using embeddings and graph structure."""
def __init__(self, data_dir: str = "data"):
"""
Initialize memory graph.
Args:
data_dir: Directory to store memory data
"""
self.data_dir = Path(data_dir)
self.data_dir.mkdir(exist_ok=True)
self.memory_file = self.data_dir / "memory_graph.json"
self.embedder = get_embedder()
self.graph = nx.Graph()
self.memories = self._load_memories()
self._build_graph()
logger.info("MemoryGraph initialized")
def _load_memories(self) -> List[Dict]:
"""Load memories from file."""
try:
if self.memory_file.exists():
with open(self.memory_file, 'r') as f:
memories = json.load(f)
logger.info(f"Loaded {len(memories)} memories")
return memories
else:
return []
except Exception as e:
logger.error(f"Error loading memories: {str(e)}", exc_info=True)
return []
def _save_memories(self):
"""Save memories to file."""
try:
with open(self.memory_file, 'w') as f:
json.dump(self.memories, f, indent=2)
logger.debug(f"Saved {len(self.memories)} memories")
except Exception as e:
logger.error(f"Error saving memories: {str(e)}", exc_info=True)
def _build_graph(self):
"""Build graph from memories."""
self.graph.clear()
for memory in self.memories:
memory_id = memory['id']
self.graph.add_node(
memory_id,
content=memory['content'],
timestamp=memory['timestamp'],
tags=memory.get('tags', [])
)
# Add edges based on similarity
if len(self.memories) > 1:
self._connect_similar_memories()
def _connect_similar_memories(self, threshold: float = 0.7):
"""
Connect similar memories with edges.
Args:
threshold: Similarity threshold for creating edges
"""
try:
# Get all memory contents and embeddings
contents = [m['content'] for m in self.memories]
embeddings = self.embedder.embed_text(contents)
# Compute pairwise similarities
for i in range(len(self.memories)):
for j in range(i + 1, len(self.memories)):
# Compute cosine similarity
similarity = np.dot(embeddings[i], embeddings[j]) / (
np.linalg.norm(embeddings[i]) * np.linalg.norm(embeddings[j])
)
if similarity >= threshold:
self.graph.add_edge(
self.memories[i]['id'],
self.memories[j]['id'],
weight=float(similarity)
)
logger.debug(f"Connected memories with {self.graph.number_of_edges()} edges")
except Exception as e:
logger.error(f"Error connecting memories: {str(e)}", exc_info=True)
def add_memory(
self,
content: str,
tags: Optional[List[str]] = None,
metadata: Optional[Dict] = None
) -> int:
"""
Add a new memory to the graph.
Args:
content: Memory content
tags: Optional tags
metadata: Optional metadata
Returns:
Memory ID
"""
content = clean_text(content)
if not content:
logger.warning("Cannot add empty memory")
return -1
try:
# Generate embedding
embedding = self.embedder.embed_text(content)[0]
# Create memory record
memory_id = len(self.memories) + 1
memory = {
'id': memory_id,
'content': content,
'embedding': embedding.tolist(),
'timestamp': datetime.now().isoformat(),
'tags': tags or [],
'metadata': metadata or {}
}
self.memories.append(memory)
self._save_memories()
# Add to graph
self.graph.add_node(
memory_id,
content=content,
timestamp=memory['timestamp'],
tags=tags or []
)
# Connect to similar memories
self._connect_new_memory(memory_id, embedding)
logger.info(f"Added memory ID: {memory_id}")
return memory_id
except Exception as e:
logger.error(f"Error adding memory: {str(e)}", exc_info=True)
return -1
def _connect_new_memory(self, memory_id: int, embedding: np.ndarray, threshold: float = 0.7):
"""
Connect a new memory to similar existing memories.
Args:
memory_id: ID of the new memory
embedding: Embedding of the new memory
threshold: Similarity threshold
"""
try:
for memory in self.memories[:-1]: # Exclude the new memory itself
other_embedding = np.array(memory['embedding'])
# Compute cosine similarity
similarity = np.dot(embedding, other_embedding) / (
np.linalg.norm(embedding) * np.linalg.norm(other_embedding)
)
if similarity >= threshold:
self.graph.add_edge(
memory_id,
memory['id'],
weight=float(similarity)
)
except Exception as e:
logger.error(f"Error connecting new memory: {str(e)}", exc_info=True)
def search_memories(self, query: str, top_k: int = 5) -> List[Dict]:
"""
Search for memories similar to a query.
Args:
query: Search query
top_k: Number of results to return
Returns:
List of similar memories
"""
if not self.memories:
return []
try:
# Embed query
query_embedding = self.embedder.embed_text(query)[0]
# Compute similarities
similarities = []
for memory in self.memories:
memory_embedding = np.array(memory['embedding'])
similarity = np.dot(query_embedding, memory_embedding) / (
np.linalg.norm(query_embedding) * np.linalg.norm(memory_embedding)
)
similarities.append({
'id': memory['id'],
'content': memory['content'],
'similarity': float(similarity),
'timestamp': memory['timestamp'],
'tags': memory.get('tags', [])
})
# Sort by similarity
similarities.sort(key=lambda x: x['similarity'], reverse=True)
return similarities[:top_k]
except Exception as e:
logger.error(f"Error searching memories: {str(e)}", exc_info=True)
return []
def get_related_memories(self, memory_id: int, max_depth: int = 2) -> List[int]:
"""
Get memories related to a specific memory.
Args:
memory_id: ID of the memory
max_depth: Maximum depth for graph traversal
Returns:
List of related memory IDs
"""
try:
if memory_id not in self.graph:
return []
# Use BFS to find related memories
related = []
visited = set()
queue = [(memory_id, 0)]
while queue:
current_id, depth = queue.pop(0)
if current_id in visited or depth > max_depth:
continue
visited.add(current_id)
if current_id != memory_id:
related.append(current_id)
# Add neighbors
for neighbor in self.graph.neighbors(current_id):
if neighbor not in visited:
queue.append((neighbor, depth + 1))
return related
except Exception as e:
logger.error(f"Error getting related memories: {str(e)}", exc_info=True)
return []
def get_memory_clusters(self) -> List[List[int]]:
"""
Get clusters of related memories.
Returns:
List of memory clusters (each cluster is a list of memory IDs)
"""
try:
if self.graph.number_of_nodes() == 0:
return []
# Find connected components
components = list(nx.connected_components(self.graph))
return [list(component) for component in components]
except Exception as e:
logger.error(f"Error getting memory clusters: {str(e)}", exc_info=True)
return []
def get_graph_stats(self) -> Dict:
"""
Get statistics about the memory graph.
Returns:
Dictionary with graph statistics
"""
return {
'total_memories': len(self.memories),
'total_connections': self.graph.number_of_edges(),
'num_clusters': len(self.get_memory_clusters()),
'avg_connections': (
2 * self.graph.number_of_edges() / self.graph.number_of_nodes()
if self.graph.number_of_nodes() > 0 else 0
)
}
def get_all_memories(self) -> List[Dict]:
"""Get all memories."""
return self.memories
def delete_memory(self, memory_id: int) -> bool:
"""
Delete a memory.
Args:
memory_id: ID of memory to delete
Returns:
True if deleted, False otherwise
"""
try:
# Remove from memories list
self.memories = [m for m in self.memories if m['id'] != memory_id]
# Remove from graph
if memory_id in self.graph:
self.graph.remove_node(memory_id)
self._save_memories()
logger.info(f"Deleted memory ID: {memory_id}")
return True
except Exception as e:
logger.error(f"Error deleting memory: {str(e)}", exc_info=True)
return False
# Global memory graph instance
_memory_graph = None
def get_memory_graph() -> MemoryGraph:
"""
Get or create a global memory graph instance.
Returns:
MemoryGraph instance
"""
global _memory_graph
if _memory_graph is None:
_memory_graph = MemoryGraph()
return _memory_graph
|