File size: 21,932 Bytes
bf961d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa6d00
bf961d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
"""
LifeUnity AI β€” Cognitive Twin System
Main Streamlit Application with 4-page interface
"""

import streamlit as st
import cv2
import numpy as np
from PIL import Image
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import pandas as pd

# Import modules
from app.mood_detection import predict_emotion
from app.memory_graph import get_memory_graph
from app.user_profile import get_user_profile
from app.insights_engine import get_insights_engine
from app.utils.logger import get_logger

# Initialize logger
logger = get_logger("MainApp")

# Page configuration
st.set_page_config(
    page_title="LifeUnity AI - Cognitive Twin",
    page_icon="🧠",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
st.markdown("""
    <style>
    .main-header {
        font-size: 2.5rem;
        font-weight: bold;
        color: #1f77b4;
        text-align: center;
        padding: 1rem;
    }
    .metric-card {
        background-color: #f0f2f6;
        padding: 1.5rem;
        border-radius: 0.5rem;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .insight-box {
        background-color: #e8f4f8;
        padding: 1rem;
        border-radius: 0.5rem;
        border-left: 4px solid #1f77b4;
        margin: 1rem 0;
    }
    .warning-box {
        background-color: #fff3cd;
        padding: 1rem;
        border-radius: 0.5rem;
        border-left: 4px solid #ffc107;
        margin: 1rem 0;
    }
    .success-box {
        background-color: #d4edda;
        padding: 1rem;
        border-radius: 0.5rem;
        border-left: 4px solid #28a745;
        margin: 1rem 0;
    }
    </style>
""", unsafe_allow_html=True)

# Initialize session state
if 'user_profile' not in st.session_state:
    st.session_state.user_profile = get_user_profile()
if 'mood_detector' not in st.session_state:
    st.session_state.mood_detector = get_mood_detector()
if 'memory_graph' not in st.session_state:
    st.session_state.memory_graph = get_memory_graph()
if 'insights_engine' not in st.session_state:
    st.session_state.insights_engine = get_insights_engine()


def render_sidebar():
    """Render the sidebar navigation."""
    with st.sidebar:
        st.markdown("# 🧠 LifeUnity AI")
        st.markdown("### Cognitive Twin System")
        st.markdown("---")
        
        # User info
        profile_summary = st.session_state.user_profile.get_summary()
        st.markdown(f"**User:** {profile_summary['user_id']}")
        st.markdown(f"**Tracked Emotions:** {profile_summary['total_emotions_tracked']}")
        st.markdown(f"**Memory Notes:** {profile_summary['total_notes']}")
        st.markdown("---")
        
        # Navigation
        page = st.radio(
            "Navigate to:",
            ["πŸ“Š Dashboard", "😊 Mood Detection", "🧩 Cognitive Memory", "πŸ’‘ AI Insights"],
            label_visibility="collapsed"
        )
        
        st.markdown("---")
        st.markdown("### Quick Stats")
        st.metric("Stress Level", f"{profile_summary['current_stress_level']:.0f}/100")
        st.metric("Productivity", f"{profile_summary['current_productivity']:.0f}/100")
        
        return page


def render_dashboard():
    """Render the Dashboard page."""
    st.markdown('<div class="main-header">πŸ“Š Dashboard</div>', unsafe_allow_html=True)
    st.markdown("### Welcome to Your Cognitive Twin System")
    
    # Get data
    profile = st.session_state.user_profile
    profile_summary = profile.get_summary()
    emotion_history = profile.get_emotion_history(limit=10)
    insights = st.session_state.insights_engine
    memory_stats = st.session_state.memory_graph.get_graph_stats()
    
    # Top metrics row
    col1, col2, col3, col4 = st.columns(4)
    
    with col1:
        stress_level = profile_summary['current_stress_level']
        stress_color = "🟒" if stress_level < 40 else "🟑" if stress_level < 70 else "πŸ”΄"
        st.metric(
            label="Current Stress",
            value=f"{stress_level:.0f}/100",
            delta=f"{stress_color}",
            delta_color="off"
        )
    
    with col2:
        productivity = profile_summary['current_productivity']
        prod_color = "🟒" if productivity >= 70 else "🟑" if productivity >= 50 else "πŸ”΄"
        st.metric(
            label="Productivity Score",
            value=f"{productivity:.0f}/100",
            delta=f"{prod_color}",
            delta_color="off"
        )
    
    with col3:
        st.metric(
            label="Tracked Emotions",
            value=profile_summary['total_emotions_tracked']
        )
    
    with col4:
        st.metric(
            label="Memory Nodes",
            value=memory_stats['total_memories']
        )
    
    st.markdown("---")
    
    # Two column layout
    col_left, col_right = st.columns([3, 2])
    
    with col_left:
        st.markdown("### πŸ“ˆ Recent Mood Trend")
        if emotion_history:
            # Prepare data for chart
            emotions_df = pd.DataFrame(emotion_history)
            emotions_df['timestamp'] = pd.to_datetime(emotions_df['timestamp'])
            
            # Create emotion mapping for numeric representation
            emotion_map = {
                'happy': 5, 'surprise': 4, 'neutral': 3,
                'sad': 2, 'angry': 1, 'fear': 1, 'disgust': 1
            }
            emotions_df['emotion_value'] = emotions_df['emotion'].map(emotion_map)
            
            # Plot
            fig = px.line(
                emotions_df,
                x='timestamp',
                y='emotion_value',
                markers=True,
                title="Emotion Timeline (Higher = More Positive)"
            )
            fig.update_layout(height=300)
            st.plotly_chart(fig, use_container_width=True)
            
            # Emotion distribution
            st.markdown("### 😊 Emotion Distribution")
            emotion_counts = emotions_df['emotion'].value_counts()
            fig_pie = px.pie(
                values=emotion_counts.values,
                names=emotion_counts.index,
                title="Recent Emotion Breakdown"
            )
            fig_pie.update_layout(height=300)
            st.plotly_chart(fig_pie, use_container_width=True)
        else:
            st.info("No emotion data yet. Visit the Mood Detection page to get started!")
    
    with col_right:
        st.markdown("### 🧩 Memory Graph Preview")
        st.metric("Total Memories", memory_stats['total_memories'])
        st.metric("Connections", memory_stats['total_connections'])
        st.metric("Memory Clusters", memory_stats['num_clusters'])
        
        if memory_stats['total_memories'] > 0:
            avg_connections = memory_stats['avg_connections']
            st.metric("Avg Connections", f"{avg_connections:.1f}")
            
            st.markdown("### πŸ“ Recent Memories")
            memories = st.session_state.memory_graph.get_all_memories()
            recent = sorted(memories, key=lambda x: x['timestamp'], reverse=True)[:3]
            
            for mem in recent:
                with st.expander(f"Memory #{mem['id']}"):
                    st.write(mem['content'][:150] + "..." if len(mem['content']) > 150 else mem['content'])
                    st.caption(f"πŸ“… {mem['timestamp'][:10]}")
        else:
            st.info("No memories yet. Add some in the Cognitive Memory page!")


def render_mood_detection():
    """Render the Mood Detection page."""
    st.markdown('<div class="main-header">😊 Mood Detection</div>', unsafe_allow_html=True)
    st.markdown("### Emotion Detection via Image Upload")
    st.info("ℹ️ Upload a clear photo of your face for emotion analysis")
    
    detector = st.session_state.mood_detector
    profile = st.session_state.user_profile
    
    st.markdown("---")
    
    # Image upload only (HuggingFace Spaces compatible)
    uploaded_file = st.file_uploader(
        "Upload an image of your face",
        type=['jpg', 'jpeg', 'png'],
        help="Upload a clear photo showing your face for emotion detection"
    )
    
    if uploaded_file is not None:
        # Load and display image
        image = Image.open(uploaded_file)
        image_np = np.array(image)
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.image(image, caption="Uploaded Image", use_column_width=True)
        
        with col2:
            with st.spinner("Analyzing emotion..."):
                result = detector.detect_emotion(image_np, return_all=True)
            
            if result['face_detected']:
                emotion = result['emotion']
                confidence = result['confidence']
                
                # Display result
                st.markdown(f"### Detected Emotion: {emotion.title()} {detector.get_emotion_emoji(emotion)}")
                st.markdown(f"**Confidence:** {confidence*100:.1f}%")
                
                # Progress bar for confidence
                st.progress(confidence)
                
                # Save to profile
                if st.button("πŸ’Ύ Save to Profile", key="save_emotion"):
                    profile.add_emotion_record(emotion, confidence)
                    st.success("βœ… Emotion saved to your profile!")
                
                # Show all emotions
                if result.get('all_emotions'):
                    st.markdown("### All Detected Emotions")
                    emotions_data = result['all_emotions']
                    for emo, score in sorted(emotions_data.items(), key=lambda x: x[1], reverse=True):
                        st.write(f"{emo.title()}: {score*100:.1f}%")
            else:
                st.error("❌ No face detected in the image. Please upload a clearer photo with a visible face.")
    
    # Recent emotion history
    st.markdown("---")
    st.markdown("### πŸ“Š Recent Emotion History")
    
    emotion_history = profile.get_emotion_history(limit=5)
    if emotion_history:
        for record in reversed(emotion_history):
            col1, col2, col3 = st.columns([2, 2, 3])
            with col1:
                st.write(f"{detector.get_emotion_emoji(record['emotion'])} **{record['emotion'].title()}**")
            with col2:
                st.write(f"Confidence: {record['confidence']*100:.1f}%")
            with col3:
                timestamp = datetime.fromisoformat(record['timestamp'])
                st.write(f"πŸ“… {timestamp.strftime('%Y-%m-%d %H:%M')}")
    else:
        st.info("No emotion history yet. Detect your first emotion above!")


def render_cognitive_memory():
    """Render the Cognitive Memory page."""
    st.markdown('<div class="main-header">🧩 Cognitive Memory</div>', unsafe_allow_html=True)
    st.markdown("### Your Personal Knowledge Graph")
    
    memory_graph = st.session_state.memory_graph
    
    # Add new memory
    st.markdown("### βž• Add New Memory")
    
    with st.form("add_memory_form"):
        note_content = st.text_area(
            "Write your note or memory:",
            height=100,
            placeholder="Enter your thoughts, ideas, or experiences..."
        )
        
        tags_input = st.text_input(
            "Tags (comma-separated):",
            placeholder="work, personal, idea, etc."
        )
        
        submitted = st.form_submit_button("πŸ’Ύ Save Memory")
        
        if submitted and note_content:
            tags = [tag.strip() for tag in tags_input.split(',')] if tags_input else []
            
            with st.spinner("Processing and embedding memory..."):
                memory_id = memory_graph.add_memory(note_content, tags=tags)
            
            if memory_id > 0:
                st.success(f"βœ… Memory saved! (ID: {memory_id})")
                
                # Also add to user profile
                st.session_state.user_profile.add_note(note_content, tags=tags)
            else:
                st.error("❌ Failed to save memory. Please try again.")
    
    st.markdown("---")
    
    # Memory statistics
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("### πŸ“Š Memory Statistics")
        stats = memory_graph.get_graph_stats()
        
        st.metric("Total Memories", stats['total_memories'])
        st.metric("Total Connections", stats['total_connections'])
        st.metric("Memory Clusters", stats['num_clusters'])
        if stats['total_memories'] > 0:
            st.metric("Avg Connections", f"{stats['avg_connections']:.2f}")
    
    with col2:
        st.markdown("### πŸ” Search Memories")
        search_query = st.text_input(
            "Search your memories:",
            placeholder="What are you looking for?"
        )
        
        if search_query:
            with st.spinner("Searching..."):
                results = memory_graph.search_memories(search_query, top_k=5)
            
            if results:
                st.markdown(f"**Found {len(results)} relevant memories:**")
                for result in results:
                    with st.expander(f"Memory #{result['id']} - Similarity: {result['similarity']*100:.1f}%"):
                        st.write(result['content'])
                        st.caption(f"πŸ“… {result['timestamp'][:10]}")
                        if result['tags']:
                            st.write(f"🏷️ Tags: {', '.join(result['tags'])}")
            else:
                st.info("No matching memories found.")
    
    # Display all memories
    st.markdown("---")
    st.markdown("### πŸ“š All Memories")
    
    memories = memory_graph.get_all_memories()
    
    if memories:
        # Sort by timestamp (newest first)
        sorted_memories = sorted(memories, key=lambda x: x['timestamp'], reverse=True)
        
        for memory in sorted_memories:
            with st.expander(f"Memory #{memory['id']} - {memory['timestamp'][:10]}"):
                st.write(memory['content'])
                
                if memory.get('tags'):
                    st.write(f"🏷️ Tags: {', '.join(memory['tags'])}")
                
                # Show related memories
                related = memory_graph.get_related_memories(memory['id'])
                if related:
                    st.write(f"πŸ”— Connected to {len(related)} other memories")
                
                # Delete button
                if st.button(f"πŸ—‘οΈ Delete", key=f"del_{memory['id']}"):
                    if memory_graph.delete_memory(memory['id']):
                        st.success("Memory deleted!")
                        st.rerun()
    else:
        st.info("No memories yet. Add your first memory above!")
    
    # Memory graph visualization
    if memories and len(memories) > 1:
        st.markdown("---")
        st.markdown("### πŸ•ΈοΈ Memory Graph Visualization")
        
        clusters = memory_graph.get_memory_clusters()
        st.write(f"Your memories form {len(clusters)} clusters of related thoughts.")
        
        for idx, cluster in enumerate(clusters):
            st.write(f"**Cluster {idx + 1}:** {len(cluster)} memories")


def render_ai_insights():
    """Render the AI Insights page."""
    st.markdown('<div class="main-header">πŸ’‘ AI Insights</div>', unsafe_allow_html=True)
    st.markdown("### Proactive Well-being Intelligence")
    
    insights_engine = st.session_state.insights_engine
    
    # Generate daily report button
    if st.button("πŸ”„ Generate Daily Report", type="primary"):
        with st.spinner("Analyzing your data and generating insights..."):
            report = insights_engine.generate_daily_report()
            st.session_state.daily_report = report
    
    # Display report if available
    if 'daily_report' in st.session_state:
        report = st.session_state.daily_report
        
        # Header
        st.markdown(f"## πŸ“‹ Daily Report - {report['date']}")
        st.caption(f"Generated at: {report['generated_at'][:19]}")
        
        st.markdown("---")
        
        # Metrics row
        col1, col2, col3 = st.columns(3)
        
        metrics = report['metrics']
        
        with col1:
            stress = metrics['stress_level']
            stress_color = "🟒" if stress < 40 else "🟑" if stress < 70 else "πŸ”΄"
            st.metric("Stress Level", f"{stress:.0f}/100", delta=stress_color, delta_color="off")
        
        with col2:
            productivity = metrics['productivity_score']
            prod_color = "🟒" if productivity >= 70 else "🟑" if productivity >= 50 else "πŸ”΄"
            st.metric("Productivity", f"{productivity:.0f}/100", delta=prod_color, delta_color="off")
        
        with col3:
            fatigue = metrics['fatigue_risk']
            fatigue_emoji = "🟒" if fatigue == "low" else "🟑" if fatigue == "moderate" else "πŸ”΄"
            st.metric("Fatigue Risk", fatigue.title(), delta=fatigue_emoji, delta_color="off")
        
        # Alerts
        if report['alerts']:
            st.markdown("---")
            st.markdown("### ⚠️ Alerts")
            for alert in report['alerts']:
                st.markdown(f'<div class="warning-box">🚨 {alert["message"]}</div>', unsafe_allow_html=True)
        
        # Insights
        st.markdown("---")
        st.markdown("### 🧠 Insights")
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown("#### Stress Analysis")
            stress_insight = report['insights']['stress']
            st.markdown(f'<div class="insight-box">', unsafe_allow_html=True)
            st.markdown(f"**Status:** {stress_insight['status']}")
            st.write(stress_insight['description'])
            st.markdown('</div>', unsafe_allow_html=True)
        
        with col2:
            st.markdown("#### Productivity Analysis")
            prod_insight = report['insights']['productivity']
            st.markdown(f'<div class="insight-box">', unsafe_allow_html=True)
            st.markdown(f"**Status:** {prod_insight['status']}")
            st.write(prod_insight['description'])
            st.markdown('</div>', unsafe_allow_html=True)
        
        # Recommendations
        st.markdown("---")
        st.markdown("### πŸ’‘ Recommendations")
        
        recommendations = report['recommendations']
        
        if recommendations:
            for rec in recommendations:
                priority_emoji = "πŸ”΄" if rec['priority'] == 'high' else "🟑" if rec['priority'] == 'medium' else "🟒"
                
                st.markdown(f'<div class="success-box">', unsafe_allow_html=True)
                st.markdown(f"### {priority_emoji} {rec['category']}")
                st.write(f"**Suggestion:** {rec['suggestion']}")
                st.write(f"**Action:** {rec['action']}")
                st.markdown('</div>', unsafe_allow_html=True)
        else:
            st.info("No specific recommendations at this time. Keep up the good work!")
    
    else:
        st.info("πŸ‘† Click 'Generate Daily Report' above to get your personalized AI insights!")
    
    # Emotion Pattern Analysis
    st.markdown("---")
    st.markdown("### πŸ“Š Emotion Pattern Analysis")
    
    days_to_analyze = st.slider("Analyze last N days:", 1, 30, 7)
    
    if st.button("Analyze Patterns"):
        with st.spinner("Analyzing emotion patterns..."):
            patterns = insights_engine.analyze_emotion_patterns(days=days_to_analyze)
        
        st.markdown(f"### Analysis for Last {patterns.get('period_days', days_to_analyze)} Days")
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.metric("Total Records", patterns.get('total_records', 0))
            st.write(f"**Overall Trend:** {patterns.get('trend', 'neutral').title()}")
            
            if patterns.get('dominant_emotions'):
                st.write("**Dominant Emotions:**")
                for emotion in patterns['dominant_emotions']:
                    st.write(f"- {emotion.title()}")
        
        with col2:
            if patterns.get('emotion_distribution'):
                st.write("**Emotion Distribution:**")
                dist = patterns['emotion_distribution']
                for emotion, count in sorted(dist.items(), key=lambda x: x[1], reverse=True):
                    st.write(f"{emotion.title()}: {count}")
    
    # Memory Insights
    st.markdown("---")
    st.markdown("### 🧩 Memory Insights")
    
    memory_insights = insights_engine.suggest_memory_insights(limit=5)
    
    if memory_insights:
        st.write("Recent memories with their relationship network:")
        
        for insight in memory_insights:
            with st.expander(f"Memory #{insight['memory_id']} - {insight['related_count']} connections"):
                st.write(insight['content_preview'])
                st.caption(f"πŸ“… {insight['timestamp'][:10]}")
                if insight['tags']:
                    st.write(f"🏷️ Tags: {', '.join(insight['tags'])}")
    else:
        st.info("No memory insights available. Add some memories in the Cognitive Memory page!")


def main():
    """Main application entry point."""
    try:
        # Render sidebar and get selected page
        page = render_sidebar()
        
        # Route to appropriate page
        if page == "πŸ“Š Dashboard":
            render_dashboard()
        elif page == "😊 Mood Detection":
            render_mood_detection()
        elif page == "🧩 Cognitive Memory":
            render_cognitive_memory()
        elif page == "πŸ’‘ AI Insights":
            render_ai_insights()
    
    except Exception as e:
        logger.error(f"Application error: {str(e)}", exc_info=True)
        st.error("An error occurred. Please refresh the page or contact support.")
        st.exception(e)


if __name__ == "__main__":
    main()