Spaces:
Runtime error
Runtime error
Commit
·
a5994ff
1
Parent(s):
e82f9dc
Attempt using safetensors for lightweight memory
Browse files
app.py
CHANGED
|
@@ -15,10 +15,15 @@ from cldm.model import create_model, load_state_dict
|
|
| 15 |
|
| 16 |
from huggingface_hub import hf_hub_url, cached_download
|
| 17 |
|
| 18 |
-
REPO_ID = "lllyasviel/ControlNet"
|
| 19 |
-
canny_checkpoint = "models/control_sd15_canny.pth"
|
| 20 |
-
scribble_checkpoint = "models/control_sd15_scribble.pth"
|
| 21 |
-
pose_checkpoint = "models/control_sd15_openpose.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 24 |
canny_model.load_state_dict(load_state_dict(cached_download(
|
|
@@ -30,7 +35,7 @@ ddim_sampler = DDIMSampler(canny_model)
|
|
| 30 |
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 31 |
pose_model.load_state_dict(load_state_dict(cached_download(
|
| 32 |
hf_hub_url(REPO_ID, pose_checkpoint)
|
| 33 |
-
), location='
|
| 34 |
pose_model = pose_model.cuda()
|
| 35 |
ddim_sampler_pose = DDIMSampler(pose_model)
|
| 36 |
|
|
@@ -41,6 +46,8 @@ scribble_model.load_state_dict(load_state_dict(cached_download(
|
|
| 41 |
scribble_model = canny_model.cuda()
|
| 42 |
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
| 43 |
|
|
|
|
|
|
|
| 44 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
| 45 |
# TODO: Add other control tasks
|
| 46 |
if input_control == "Scribble":
|
|
@@ -64,14 +71,24 @@ def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_re
|
|
| 64 |
|
| 65 |
seed_everything(seed)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 68 |
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 69 |
shape = (4, H // 8, W // 8)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
| 71 |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 72 |
shape, cond, verbose=False, eta=eta,
|
| 73 |
unconditional_guidance_scale=scale,
|
| 74 |
unconditional_conditioning=un_cond)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
x_samples = canny_model.decode_first_stage(samples)
|
| 76 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 77 |
|
|
@@ -92,16 +109,24 @@ def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image
|
|
| 92 |
|
| 93 |
seed_everything(seed)
|
| 94 |
|
|
|
|
|
|
|
|
|
|
| 95 |
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 96 |
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 97 |
shape = (4, H // 8, W // 8)
|
| 98 |
|
| 99 |
-
|
|
|
|
|
|
|
| 100 |
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
| 101 |
shape, cond, verbose=False, eta=eta,
|
| 102 |
unconditional_guidance_scale=scale,
|
| 103 |
unconditional_conditioning=un_cond)
|
| 104 |
|
|
|
|
|
|
|
|
|
|
| 105 |
x_samples = scribble_model.decode_first_stage(samples)
|
| 106 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 107 |
|
|
@@ -126,18 +151,25 @@ def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_res
|
|
| 126 |
seed = random.randint(0, 65535)
|
| 127 |
seed_everything(seed)
|
| 128 |
|
|
|
|
|
|
|
| 129 |
|
|
|
|
| 130 |
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 131 |
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 132 |
shape = (4, H // 8, W // 8)
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
| 136 |
shape, cond, verbose=False, eta=eta,
|
| 137 |
unconditional_guidance_scale=scale,
|
| 138 |
unconditional_conditioning=un_cond)
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
x_samples = pose_model.decode_first_stage(samples)
|
| 142 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 143 |
|
|
|
|
| 15 |
|
| 16 |
from huggingface_hub import hf_hub_url, cached_download
|
| 17 |
|
| 18 |
+
# REPO_ID = "lllyasviel/ControlNet"
|
| 19 |
+
# canny_checkpoint = "models/control_sd15_canny.pth"
|
| 20 |
+
# scribble_checkpoint = "models/control_sd15_scribble.pth"
|
| 21 |
+
# pose_checkpoint = "models/control_sd15_openpose.pth"
|
| 22 |
+
|
| 23 |
+
REPO_ID = "webui/ControlNet-modules-safetensors"
|
| 24 |
+
canny_checkpoint = " control_canny-fp16.safetensors"
|
| 25 |
+
scribble_checkpoint = "control_scribble-fp16.safetensors"
|
| 26 |
+
pose_checkpoint = "control_openpose-fp16.safetensors"
|
| 27 |
|
| 28 |
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 29 |
canny_model.load_state_dict(load_state_dict(cached_download(
|
|
|
|
| 35 |
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 36 |
pose_model.load_state_dict(load_state_dict(cached_download(
|
| 37 |
hf_hub_url(REPO_ID, pose_checkpoint)
|
| 38 |
+
), location='cpu'))
|
| 39 |
pose_model = pose_model.cuda()
|
| 40 |
ddim_sampler_pose = DDIMSampler(pose_model)
|
| 41 |
|
|
|
|
| 46 |
scribble_model = canny_model.cuda()
|
| 47 |
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
| 48 |
|
| 49 |
+
save_memory = False
|
| 50 |
+
|
| 51 |
def process(input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
| 52 |
# TODO: Add other control tasks
|
| 53 |
if input_control == "Scribble":
|
|
|
|
| 71 |
|
| 72 |
seed_everything(seed)
|
| 73 |
|
| 74 |
+
if save_memory:
|
| 75 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
| 76 |
+
|
| 77 |
cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 78 |
un_cond = {"c_concat": [control], "c_crossattn": [canny_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 79 |
shape = (4, H // 8, W // 8)
|
| 80 |
|
| 81 |
+
if save_memory:
|
| 82 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
| 83 |
+
|
| 84 |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 85 |
shape, cond, verbose=False, eta=eta,
|
| 86 |
unconditional_guidance_scale=scale,
|
| 87 |
unconditional_conditioning=un_cond)
|
| 88 |
+
|
| 89 |
+
if save_memory:
|
| 90 |
+
canny_model.low_vram_shift(is_diffusing=False)
|
| 91 |
+
|
| 92 |
x_samples = canny_model.decode_first_stage(samples)
|
| 93 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 94 |
|
|
|
|
| 109 |
|
| 110 |
seed_everything(seed)
|
| 111 |
|
| 112 |
+
if save_memory:
|
| 113 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
| 114 |
+
|
| 115 |
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 116 |
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 117 |
shape = (4, H // 8, W // 8)
|
| 118 |
|
| 119 |
+
if save_memory:
|
| 120 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
| 121 |
+
|
| 122 |
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
| 123 |
shape, cond, verbose=False, eta=eta,
|
| 124 |
unconditional_guidance_scale=scale,
|
| 125 |
unconditional_conditioning=un_cond)
|
| 126 |
|
| 127 |
+
if save_memory:
|
| 128 |
+
scribble_model.low_vram_shift(is_diffusing=False)
|
| 129 |
+
|
| 130 |
x_samples = scribble_model.decode_first_stage(samples)
|
| 131 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 132 |
|
|
|
|
| 151 |
seed = random.randint(0, 65535)
|
| 152 |
seed_everything(seed)
|
| 153 |
|
| 154 |
+
if save_memory:
|
| 155 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
| 156 |
|
| 157 |
+
|
| 158 |
cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 159 |
un_cond = {"c_concat": [control], "c_crossattn": [pose_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 160 |
shape = (4, H // 8, W // 8)
|
| 161 |
|
| 162 |
+
if save_memory:
|
| 163 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
| 164 |
+
|
| 165 |
samples, intermediates = ddim_sampler_pose.sample(ddim_steps, num_samples,
|
| 166 |
shape, cond, verbose=False, eta=eta,
|
| 167 |
unconditional_guidance_scale=scale,
|
| 168 |
unconditional_conditioning=un_cond)
|
| 169 |
|
| 170 |
+
if save_memory:
|
| 171 |
+
pose_model.low_vram_shift(is_diffusing=False)
|
| 172 |
+
|
| 173 |
x_samples = pose_model.decode_first_stage(samples)
|
| 174 |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 175 |
|