File size: 16,038 Bytes
089d923 6f2bef2 ac097cd 296d19e ac097cd 296d19e ac097cd 296d19e ac097cd 296d19e 089d923 ac097cd 089d923 ac097cd ef4f851 802b19a ef4f851 ac097cd 2eec318 ac097cd ef4f851 802b19a ef4f851 ac097cd ef4f851 ac097cd 6f2bef2 802b19a 6f2bef2 802b19a 6f2bef2 ac097cd 089d923 ac097cd 089d923 ac097cd 089d923 802b19a ac097cd 6f2bef2 ef4f851 6f2bef2 802b19a 6f2bef2 802b19a 6f2bef2 089d923 ef4f851 6f2bef2 802b19a 6f2bef2 802b19a ef4f851 6f2bef2 802b19a 6f2bef2 802b19a ef4f851 a393253 ef4f851 a393253 ef4f851 a393253 ef4f851 a393253 ef4f851 802b19a ef4f851 802b19a 089d923 ac097cd 2eec318 ac097cd 3f48061 ac097cd 2eec318 6f2bef2 3f48061 6f2bef2 ac097cd 6f2bef2 ac097cd 089d923 ac097cd 089d923 ac097cd ef4f851 6f2bef2 ef4f851 ac097cd 296d19e 76aa0b3 296d19e ac097cd 76aa0b3 ac097cd 296d19e 089d923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import gradio as gr
from huggingface_hub import HfApi
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
import os
DEFAULT_FILE = "default_models.json"
USER_FILE = "models.json"
# -----------------------------
# Model data loading / saving
# -----------------------------
def load_default_models():
with open(DEFAULT_FILE, "r", encoding="utf-8") as f:
return json.load(f)
def load_user_models():
if os.path.exists(USER_FILE):
with open(USER_FILE, "r", encoding="utf-8") as f:
try:
return json.load(f)
except json.JSONDecodeError:
return {}
return {}
def save_user_models(data):
with open(USER_FILE, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2, ensure_ascii=False)
def merge_models():
"""
Merge default + user models into one tree:
Category -> Family -> Model -> meta
User models can introduce new categories/families.
"""
base = load_default_models()
user = load_user_models()
for category, families in user.items():
if category not in base:
base[category] = {}
for family, models in families.items():
if family not in base[category]:
base[category][family] = {}
for model_name, meta in models.items():
base[category][family][model_name] = meta
return base
# -----------------------------
# Utility: flatten and lookup
# -----------------------------
def flatten_models(model_tree):
"""
Returns a dict:
full_key -> (meta, category, family, model_name)
where full_key = "Category / Family / Model"
"""
flat = {}
for category, families in model_tree.items():
for family, models in families.items():
for model_name, meta in models.items():
full_key = f"{category} / {family} / {model_name}"
flat[full_key] = (meta, category, family, model_name)
return flat
# -----------------------------
# Debug logging
# -----------------------------
DEBUG_MESSAGES = [] # global buffer
def debug(msg):
"""Append a debug message to the global log."""
DEBUG_MESSAGES.append(str(msg))
if len(DEBUG_MESSAGES) > 300:
DEBUG_MESSAGES.pop(0)
return "\n".join(DEBUG_MESSAGES)
def get_debug_log():
return "\n".join(DEBUG_MESSAGES)
# -----------------------------
# Add a new model (from the box)
# -----------------------------
def add_model_box(
category,
family,
model_name,
model_id,
description,
link,
emoji
):
try:
if not model_id:
debug("Add model failed: no model_id provided")
return gr.Markdown.update(
value="Please provide a Model ID like `user/model`."
)
if not category:
category = "Custom"
if not family:
family = "User-Added"
if not model_name:
model_name = model_id.split("/")[-1]
if not description:
description = "User-added model."
if not link:
link = f"https://huggingface.co/{model_id}"
if not emoji:
emoji = "✨"
user_models = load_user_models()
if category not in user_models:
user_models[category] = {}
if family not in user_models[category]:
user_models[category][family] = {}
user_models[category][family][model_name] = {
"id": model_id,
"description": description,
"link": link,
"emoji": emoji
}
save_user_models(user_models)
msg = (
f"Added model under `{category} / {family}`: "
f"{emoji} **{model_name}** (`{model_id}`)\n\n"
f"It will appear in the model tree after reloading the Space."
)
debug(f"Model added: {category} / {family} / {model_name} ({model_id})")
return gr.Markdown.update(value=msg)
except Exception:
import traceback
tb = traceback.format_exc()
debug(f"ERROR in add_model_box:\n{tb}")
return gr.Markdown.update(
value="An error occurred while adding the model. Check Debug Log."
)
# -----------------------------
# Helper: check model access (repo visibility)
# -----------------------------
def check_model_access(model_id, hf_token):
"""
Try to get model info; return (ok: bool, message: str).
This helps distinguish auth/gating vs other issues.
For local loading, this is not strictly required, but we keep
it to give clearer messages for private/gated models.
"""
try:
api = HfApi(token=hf_token.token if hf_token else None)
_ = api.model_info(model_id)
return True, ""
except Exception as e:
import traceback
tb = traceback.format_exc()
debug(f"ERROR in check_model_access for {model_id}:\n{tb}")
return False, str(e)
# -----------------------------
# Local model cache
# -----------------------------
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
LOCAL_MODEL_CACHE = {}
def load_local_model(model_id):
"""
Load a model + tokenizer locally and cache them.
This makes the Space behave like a dedicated model Space:
models are executed inside the container, not via Inference API.
"""
if model_id in LOCAL_MODEL_CACHE:
debug(f"Using cached model: {model_id}")
return LOCAL_MODEL_CACHE[model_id]
debug(f"Loading model locally: {model_id}")
try:
tokenizer = AutoTokenizer.from_pretrained(model_id)
except Exception as e:
debug(f"ERROR loading tokenizer for {model_id}: {e}")
raise
try:
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
except Exception as e:
debug(f"ERROR loading model weights for {model_id}: {e}")
raise
LOCAL_MODEL_CACHE[model_id] = (tokenizer, model)
return tokenizer, model
# -----------------------------
# Chat function (local models)
# -----------------------------
def respond(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
active_model_key,
hf_token: gr.OAuthToken
):
# No model chosen
if active_model_key is None:
yield "No model selected. Please choose a model in the sidebar and click 'Use this model'."
return
models = merge_models()
flat = flatten_models(models)
meta_tuple = flat.get(active_model_key)
if meta_tuple is None:
yield "Selected model not found. Please choose a model again."
return
meta, _, _, _ = meta_tuple
model_id = meta["id"]
debug(f"Chat using local model: {model_id}")
# Optional: check repo access (for private/gated models)
ok, msg = check_model_access(model_id, hf_token)
if not ok:
yield (
f"Could not access model `{model_id}` on Hugging Face.\n\n"
f"This is usually because:\n"
f"- The repo is private or gated and this token has no access\n"
f"- Or the token is invalid/expired\n\n"
f"Raw error:\n{msg}\n\n"
f"Check Debug Log for more details."
)
return
# Load model locally
try:
tokenizer, model = load_local_model(model_id)
except Exception:
import traceback
tb = traceback.format_exc()
debug(f"ERROR in load_local_model for {model_id}:\n{tb}")
yield (
f"Failed to load model `{model_id}` locally inside the Space.\n"
f"Check the Debug Log for details (likely out of memory or missing files)."
)
return
# Build chat-style prompt from history + current message
prompt = system_message.strip() + "\n\n"
for turn in history or []:
role = turn.get("role", "user")
content = turn.get("content", "")
if role == "user":
prompt += f"User: {content}\n"
else:
prompt += f"Assistant: {content}\n"
prompt += f"User: {message}\nAssistant:"
debug(f"Prompt length (chars): {len(prompt)}")
try:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate text locally
output_ids = model.generate(
**inputs,
max_new_tokens=int(max_tokens),
do_sample=True,
temperature=float(temperature),
top_p=float(top_p),
pad_token_id=tokenizer.eos_token_id if tokenizer.eos_token_id is not None else None,
)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Extract only the assistant's final answer
if "Assistant:" in output_text:
answer = output_text.split("Assistant:")[-1].strip()
else:
answer = output_text.strip()
yield answer
except Exception:
import traceback
tb = traceback.format_exc()
debug(f"ERROR during local generation for {model_id}:\n{tb}")
yield (
"An error occurred during local text generation.\n"
"This is often due to running out of memory for large models.\n"
"Try a smaller model, fewer max tokens, or check the Debug Log."
)
# -----------------------------
# Use model helper
# -----------------------------
def use_model(fk, old_fk):
"""
fk: full key "Category / Family / Model" (from gr.State(full_key))
old_fk: previous active model key (from active_model_state)
Returns: (new_active_key, current_model_label_text)
"""
try:
models_local = merge_models()
flat_local = flatten_models(models_local)
meta_loc_tuple = flat_local.get(fk)
if not meta_loc_tuple:
debug(f"use_model: key not found: {fk}")
return old_fk, "**Current model:** _none selected_"
meta_loc, _, _, mname = meta_loc_tuple
emoji_local = meta_loc.get("emoji", "✨")
label_text = f"**Current model:** {emoji_local} {mname}"
debug(f"use_model: selected {fk}")
return fk, label_text
except Exception:
import traceback
tb = traceback.format_exc()
debug(f"ERROR in use_model:\n{tb}")
return old_fk, "**Current model:** _error occurred (see Debug Log)_"
# -----------------------------
# Build the sidebar tree
# -----------------------------
def build_model_tree(
models,
active_model_state,
current_model_label
):
"""
models: merged models dict (Category -> Family -> Model -> meta)
active_model_state: gr.State storing current active full key
current_model_label: gr.Markdown for 'Current model: ...'
"""
for category, families in models.items():
with gr.Accordion(category, open=False):
for family, model_dict in families.items():
with gr.Accordion(family, open=False):
for model_name, meta in model_dict.items():
emoji = meta.get("emoji", "✨")
full_key = f"{category} / {family} / {model_name}"
# Model accordion
with gr.Accordion(f"{emoji} {model_name}", open=False):
info_text = (
f"**Model ID:** `{meta['id']}` \n"
f"**Description:** {meta['description']} \n"
f"[Model card]({meta['link']})"
)
gr.Markdown(info_text)
use_btn = gr.Button("Use this model", size="sm")
# Wire button -> use_model
use_btn.click(
use_model,
inputs=[gr.State(full_key), active_model_state],
outputs=[active_model_state, current_model_label],
)
# -----------------------------
# Build the UI
# -----------------------------
with gr.Blocks() as demo:
models_tree = merge_models()
# Holds full key: "Category / Family / Model"
active_model_key = gr.State(value=None)
with gr.Sidebar():
gr.LoginButton()
# Collapsible "Add New Model" box
with gr.Accordion("Add New Model", open=False):
category_input = gr.Textbox(
label="Category (e.g. Exotic or new category)",
placeholder="Exotic"
)
family_input = gr.Textbox(
label="Family (e.g. RWKV)",
placeholder="RWKV"
)
model_name_input = gr.Textbox(
label="Model Name (e.g. RWKV-World-7B)",
placeholder="RWKV-World-7B"
)
model_id_input = gr.Textbox(
label="Model ID (e.g. BlinkDL/rwkv-7-world)",
placeholder="BlinkDL/rwkv-7-world"
)
description_input = gr.Textbox(
label="Description (optional)",
lines=2
)
link_input = gr.Textbox(
label="Link (optional, will default to https://huggingface.co/ModelID if empty)",
lines=1
)
emoji_input = gr.Textbox(
label="Emoji (optional, e.g. 🌍)",
lines=1
)
add_button = gr.Button("Add Model")
add_status = gr.Markdown("")
add_button.click(
add_model_box,
inputs=[
category_input,
family_input,
model_name_input,
model_id_input,
description_input,
link_input,
emoji_input,
],
outputs=add_status,
)
# Debug Log box (separate accordion)
with gr.Accordion("Debug Log", open=False):
debug_log = gr.Textbox(
label="System Debug Output",
value="",
lines=15,
max_lines=200,
interactive=False,
show_copy_button=True,
)
# Button to refresh debug log
refresh_debug = gr.Button("Refresh Debug Log", size="sm")
refresh_debug.click(
get_debug_log,
inputs=None,
outputs=debug_log
)
# Current model label under the debug box
current_model_label = gr.Markdown("**Current model:** _none selected_")
gr.Markdown("### Models")
# Build nested accordions for models
build_model_tree(
models_tree,
active_model_state=active_model_key,
current_model_label=current_model_label,
)
# Main chat interface
chatbot = gr.ChatInterface(
respond,
title=current_model_label,
type="messages",
additional_inputs=[
gr.Textbox(
value="You are a friendly chatbot.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=100000,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
),
active_model_key, # passes current active model key into respond()
],
)
if __name__ == "__main__":
demo.launch()
|