Spaces:
Sleeping
Sleeping
| # hoax_filter.py | |
| # Lightweight, stateless misinformation heuristics for language/source/scale | |
| import re | |
| from urllib.parse import urlparse | |
| from dataclasses import dataclass | |
| from typing import Dict, Any, Optional, Tuple, List | |
| _NUMBER_UNIT = re.compile( | |
| r'(?P<num>[\d,]+(?:\.\d+)?)\s*(?P<unit>mile|miles|km|kilometer|kilometers)', | |
| re.I | |
| ) | |
| LANG_RED_FLAGS = [ | |
| r'\brecently\s+declassified\b', | |
| r'\bshocking\b', | |
| r'\bastonishing\b', | |
| r'\bexplosive\b', | |
| r'\bexperts\s+say\b', | |
| r'\breportedly\b', | |
| r'\bmothership\b', | |
| r'\bancient\s+alien\b', | |
| r'\bdormant\s+(?:observational\s+)?craft\b', | |
| r'\bangular\s+edges\b', | |
| r'\bviral\b', | |
| r'\bnever\s+before\s+seen\b', | |
| r'\bshaking\s+(?:the\s+)?scientific\s+community\b', | |
| r'\bfootage\b', | |
| ] | |
| # Trusted primary sources (add/remove as you like) | |
| ALLOW_DOMAINS = { | |
| 'nasa.gov', 'jpl.nasa.gov', 'pds.nasa.gov', 'science.nasa.gov', 'heasarc.gsfc.nasa.gov', | |
| 'esa.int', 'esawebservices.esa.int', 'esa-maine.esa.int', | |
| 'noirlab.edu', 'cfa.harvard.edu', 'caltech.edu', 'berkeley.edu', 'mit.edu', | |
| 'nature.com', 'science.org', 'iopscience.iop.org', 'agu.org', | |
| 'arxiv.org', 'adsabs.harvard.edu', | |
| } | |
| # High-virality social/video platforms: treat as high risk for scientific “scoops” | |
| DENY_DOMAINS = { | |
| 'm.facebook.com', 'facebook.com', 'x.com', 'twitter.com', 't.co', | |
| 'tiktok.com', 'youtube.com', 'youtu.be', 'instagram.com', 'reddit.com', | |
| } | |
| # Medium-risk tabloid/aggregator examples (tune to preference) | |
| MEDIUM_DOMAINS = { | |
| 'dailyMail.co.uk', 'dailymail.co.uk', 'newyorkpost.com', 'the-sun.com', | |
| 'mirror.co.uk', 'sputniknews.com', 'rt.com', | |
| } | |
| class HoaxFilterResult: | |
| red_flag_hits: int | |
| source_score: float | |
| scale_score: float | |
| combined: float | |
| notes: Dict[str, Any] | |
| class HoaxFilter: | |
| """ | |
| Scores are in [0,1]; higher means more likely hoax/misinformation. | |
| """ | |
| def __init__(self, | |
| red_flag_weight: float = 0.35, | |
| source_weight: float = 0.25, | |
| scale_weight: float = 0.40, | |
| extraordinary_km: float = 50.0): | |
| """ | |
| extraordinary_km: any single claimed length >= this is 'extraordinary'. | |
| Adjust to tighten/loosen sensitivity (100–500 for stricter). | |
| """ | |
| self.red_flag_weight = red_flag_weight | |
| self.source_weight = source_weight | |
| self.scale_weight = scale_weight | |
| self.extraordinary_km = extraordinary_km | |
| self._flag_res = [re.compile(p, re.I) for p in LANG_RED_FLAGS] | |
| def _km_from_match(num: str, unit: str) -> float: | |
| n = float(num.replace(',', '')) | |
| if unit.lower().startswith('mile'): | |
| return n * 1.609344 | |
| return n | |
| def language_red_flags(self, text: str) -> Tuple[int, List[str]]: | |
| hits = [] | |
| for rx in self._flag_res: | |
| if rx.search(text): | |
| hits.append(rx.pattern) | |
| return len(hits), hits | |
| def source_heuristic(self, url: Optional[str]) -> Tuple[float, str]: | |
| """ | |
| Returns (risk, note). risk in [0,1]; higher is worse. | |
| """ | |
| if not url: | |
| return 0.5, "no_source" | |
| host = urlparse(url).netloc.lower() | |
| # Strip common subdomains to compare base domains | |
| parts = host.split(':')[0].split('.') | |
| base = '.'.join(parts[-2:]) if len(parts) >= 2 else host | |
| if host in ALLOW_DOMAINS or base in ALLOW_DOMAINS: | |
| return 0.05, f"allow:{host}" | |
| if host in DENY_DOMAINS or base in DENY_DOMAINS: | |
| return 0.85, f"deny:{host}" | |
| if host in MEDIUM_DOMAINS or base in MEDIUM_DOMAINS: | |
| return 0.7, f"medium:{host}" | |
| return 0.6, f"unknown:{host}" | |
| def scale_check(self, text: str, context_keywords: Optional[List[str]] = None) -> Tuple[float, Dict]: | |
| """ | |
| Parse lengths and judge extraordinariness, boosting risk when context | |
| suggests planetary/astronomical claims. | |
| """ | |
| context_keywords = context_keywords or [] | |
| sizes_km = [] | |
| for m in _NUMBER_UNIT.finditer(text): | |
| sizes_km.append(self._km_from_match(m.group('num'), m.group('unit'))) | |
| if not sizes_km: | |
| return 0.0, {"sizes_km": []} | |
| max_km = max(sizes_km) | |
| extraordinary_context = any(k in text.lower() for k in context_keywords) | |
| ratio = max_km / max(self.extraordinary_km, 1.0) | |
| base = min(ratio, 1.0) # saturate at 1.0 | |
| if extraordinary_context: | |
| base = min(1.0, base * 1.25) # slight boost in relevant context | |
| return base, {"sizes_km": sizes_km, "max_km": max_km, "extraordinary_context": extraordinary_context} | |
| def score(self, text: str, url: Optional[str] = None, | |
| context_keywords: Optional[List[str]] = None) -> HoaxFilterResult: | |
| rf_count, rf_hits = self.language_red_flags(text) | |
| rf_score = min(rf_count / 4.0, 1.0) | |
| src_risk, src_note = self.source_heuristic(url) | |
| scale_risk, scale_notes = self.scale_check(text, context_keywords=context_keywords) | |
| combined = (self.red_flag_weight * rf_score | |
| + self.source_weight * src_risk | |
| + self.scale_weight * scale_risk) | |
| return HoaxFilterResult( | |
| red_flag_hits=rf_count, | |
| source_score=src_risk, | |
| scale_score=scale_risk, | |
| combined=min(combined, 1.0), | |
| notes={ | |
| "red_flag_patterns": rf_hits, | |
| "source": src_note, | |
| **scale_notes | |
| } | |
| ) | |