Spaces:
Running
on
Zero
Running
on
Zero
File size: 113,863 Bytes
a42ebba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 |
# generated by datamodel-codegen:
# filename: filtered-openapi.yaml
# timestamp: 2025-05-19T21:38:55+00:00
from __future__ import annotations
from datetime import date, datetime
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Union
from uuid import UUID
from pydantic import AnyUrl, BaseModel, ConfigDict, Field, RootModel, StrictBytes
class APIKey(BaseModel):
created_at: Optional[datetime] = None
description: Optional[str] = None
id: Optional[str] = None
key_prefix: Optional[str] = None
name: Optional[str] = None
class APIKeyWithPlaintext(APIKey):
plaintext_key: Optional[str] = Field(
None, description='The full API key (only returned at creation)'
)
class AuditLog(BaseModel):
createdAt: Optional[datetime] = Field(
None, description='The date and time the event was created'
)
event_id: Optional[str] = Field(None, description='the id of the event')
event_type: Optional[str] = Field(None, description='the type of the event')
params: Optional[Dict[str, Any]] = Field(
None, description='data related to the event'
)
class OutputFormat(str, Enum):
jpeg = 'jpeg'
png = 'png'
class BFLFluxPro11GenerateRequest(BaseModel):
height: int = Field(..., description='Height of the generated image')
image_prompt: Optional[str] = Field(None, description='Optional image prompt')
output_format: Optional[OutputFormat] = Field(
None, description='Output image format'
)
prompt: str = Field(..., description='The main text prompt for image generation')
prompt_upsampling: Optional[bool] = Field(
None, description='Whether to use prompt upsampling'
)
safety_tolerance: Optional[int] = Field(None, description='Safety tolerance level')
seed: Optional[int] = Field(None, description='Random seed for reproducibility')
webhook_secret: Optional[str] = Field(
None, description='Optional webhook secret for async processing'
)
webhook_url: Optional[str] = Field(
None, description='Optional webhook URL for async processing'
)
width: int = Field(..., description='Width of the generated image')
class BFLFluxPro11GenerateResponse(BaseModel):
id: str = Field(..., description='Job ID for tracking')
polling_url: str = Field(..., description='URL to poll for results')
class BFLFluxProGenerateRequest(BaseModel):
guidance_scale: Optional[float] = Field(
None, description='The guidance scale for generation.', ge=1.0, le=20.0
)
height: int = Field(
..., description='The height of the image to generate.', ge=64, le=2048
)
negative_prompt: Optional[str] = Field(
None, description='The negative prompt for image generation.'
)
num_images: Optional[int] = Field(
None, description='The number of images to generate.', ge=1, le=4
)
num_inference_steps: Optional[int] = Field(
None, description='The number of inference steps.', ge=1, le=100
)
prompt: str = Field(..., description='The text prompt for image generation.')
seed: Optional[int] = Field(None, description='The seed value for reproducibility.')
width: int = Field(
..., description='The width of the image to generate.', ge=64, le=2048
)
class BFLFluxProGenerateResponse(BaseModel):
id: str = Field(..., description='The unique identifier for the generation task.')
polling_url: str = Field(..., description='URL to poll for the generation result.')
class Status(str, Enum):
in_progress = 'in_progress'
completed = 'completed'
incomplete = 'incomplete'
class Type(str, Enum):
computer_call = 'computer_call'
class ComputerToolCall(BaseModel):
action: Dict[str, Any]
call_id: str = Field(
...,
description='An identifier used when responding to the tool call with output.\n',
)
id: str = Field(..., description='The unique ID of the computer call.')
status: Status = Field(
...,
description='The status of the item. One of `in_progress`, `completed`, or\n`incomplete`. Populated when items are returned via API.\n',
)
type: Type = Field(
..., description='The type of the computer call. Always `computer_call`.'
)
class Environment(str, Enum):
windows = 'windows'
mac = 'mac'
linux = 'linux'
ubuntu = 'ubuntu'
browser = 'browser'
class Type1(str, Enum):
computer_use_preview = 'computer_use_preview'
class ComputerUsePreviewTool(BaseModel):
display_height: int = Field(..., description='The height of the computer display.')
display_width: int = Field(..., description='The width of the computer display.')
environment: Environment = Field(
..., description='The type of computer environment to control.'
)
type: Literal['ComputerUsePreviewTool'] = Field(
...,
description='The type of the computer use tool. Always `computer_use_preview`.',
)
class CreateAPIKeyRequest(BaseModel):
description: Optional[str] = None
name: str
class Customer(BaseModel):
createdAt: Optional[datetime] = Field(
None, description='The date and time the user was created'
)
email: Optional[str] = Field(None, description='The email address for this user')
id: str = Field(..., description='The firebase UID of the user')
is_admin: Optional[bool] = Field(None, description='Whether the user is an admin')
metronome_id: Optional[str] = Field(None, description='The Metronome customer ID')
name: Optional[str] = Field(None, description='The name for this user')
stripe_id: Optional[str] = Field(None, description='The Stripe customer ID')
updatedAt: Optional[datetime] = Field(
None, description='The date and time the user was last updated'
)
class CustomerStorageResourceResponse(BaseModel):
download_url: Optional[str] = Field(
None,
description='The signed URL to use for downloading the file from the specified path',
)
existing_file: Optional[bool] = Field(
None, description='Whether an existing file with the same hash was found'
)
expires_at: Optional[datetime] = Field(
None, description='When the signed URL will expire'
)
upload_url: Optional[str] = Field(
None,
description='The signed URL to use for uploading the file to the specified path',
)
class Role(str, Enum):
user = 'user'
assistant = 'assistant'
system = 'system'
developer = 'developer'
class Type2(str, Enum):
message = 'message'
class ErrorResponse(BaseModel):
error: str
message: str
class Type3(str, Enum):
file_search = 'file_search'
class FileSearchTool(BaseModel):
type: Literal['FileSearchTool'] = Field(..., description='The type of tool')
vector_store_ids: List[str] = Field(
..., description='IDs of vector stores to search in'
)
class Result(BaseModel):
file_id: Optional[str] = Field(None, description='The unique ID of the file.\n')
filename: Optional[str] = Field(None, description='The name of the file.\n')
score: Optional[float] = Field(
None, description='The relevance score of the file - a value between 0 and 1.\n'
)
text: Optional[str] = Field(
None, description='The text that was retrieved from the file.\n'
)
class Status1(str, Enum):
in_progress = 'in_progress'
searching = 'searching'
completed = 'completed'
incomplete = 'incomplete'
failed = 'failed'
class Type4(str, Enum):
file_search_call = 'file_search_call'
class FileSearchToolCall(BaseModel):
id: str = Field(..., description='The unique ID of the file search tool call.\n')
queries: List[str] = Field(
..., description='The queries used to search for files.\n'
)
results: Optional[List[Result]] = Field(
None, description='The results of the file search tool call.\n'
)
status: Status1 = Field(
...,
description='The status of the file search tool call. One of `in_progress`, \n`searching`, `incomplete` or `failed`,\n',
)
type: Type4 = Field(
...,
description='The type of the file search tool call. Always `file_search_call`.\n',
)
class Type5(str, Enum):
function = 'function'
class FunctionTool(BaseModel):
description: Optional[str] = Field(
None, description='Description of what the function does'
)
name: str = Field(..., description='Name of the function')
parameters: Dict[str, Any] = Field(
..., description='JSON Schema object describing the function parameters'
)
type: Literal['FunctionTool'] = Field(..., description='The type of tool')
class Status2(str, Enum):
in_progress = 'in_progress'
completed = 'completed'
incomplete = 'incomplete'
class Type6(str, Enum):
function_call = 'function_call'
class FunctionToolCall(BaseModel):
arguments: str = Field(
..., description='A JSON string of the arguments to pass to the function.\n'
)
call_id: str = Field(
...,
description='The unique ID of the function tool call generated by the model.\n',
)
id: Optional[str] = Field(
None, description='The unique ID of the function tool call.\n'
)
name: str = Field(..., description='The name of the function to run.\n')
status: Optional[Status2] = Field(
None,
description='The status of the item. One of `in_progress`, `completed`, or\n`incomplete`. Populated when items are returned via API.\n',
)
type: Type6 = Field(
..., description='The type of the function tool call. Always `function_call`.\n'
)
class GeminiCitation(BaseModel):
authors: Optional[List[str]] = None
endIndex: Optional[int] = None
license: Optional[str] = None
publicationDate: Optional[date] = None
startIndex: Optional[int] = None
title: Optional[str] = None
uri: Optional[str] = None
class GeminiCitationMetadata(BaseModel):
citations: Optional[List[GeminiCitation]] = None
class Role1(str, Enum):
user = 'user'
model = 'model'
class GeminiFunctionDeclaration(BaseModel):
description: Optional[str] = None
name: str
parameters: Dict[str, Any] = Field(
..., description='JSON schema for the function parameters'
)
class GeminiGenerationConfig(BaseModel):
maxOutputTokens: Optional[int] = Field(
None,
description='Maximum number of tokens that can be generated in the response. A token is approximately 4 characters. 100 tokens correspond to roughly 60-80 words.\n',
examples=[2048],
ge=16,
le=8192,
)
seed: Optional[int] = Field(
None,
description="When seed is fixed to a specific value, the model makes a best effort to provide the same response for repeated requests. Deterministic output isn't guaranteed. Also, changing the model or parameter settings, such as the temperature, can cause variations in the response even when you use the same seed value. By default, a random seed value is used. Available for the following models:, gemini-2.5-flash-preview-04-1, gemini-2.5-pro-preview-05-0, gemini-2.0-flash-lite-00, gemini-2.0-flash-001\n",
examples=[343940597],
)
stopSequences: Optional[List[str]] = None
temperature: Optional[float] = Field(
1,
description="The temperature is used for sampling during response generation, which occurs when topP and topK are applied. Temperature controls the degree of randomness in token selection. Lower temperatures are good for prompts that require a less open-ended or creative response, while higher temperatures can lead to more diverse or creative results. A temperature of 0 means that the highest probability tokens are always selected. In this case, responses for a given prompt are mostly deterministic, but a small amount of variation is still possible. If the model returns a response that's too generic, too short, or the model gives a fallback response, try increasing the temperature\n",
ge=0.0,
le=2.0,
)
topK: Optional[int] = Field(
40,
description="Top-K changes how the model selects tokens for output. A top-K of 1 means the next selected token is the most probable among all tokens in the model's vocabulary. A top-K of 3 means that the next token is selected from among the 3 most probable tokens by using temperature.\n",
examples=[40],
ge=1,
)
topP: Optional[float] = Field(
0.95,
description='If specified, nucleus sampling is used.\nTop-P changes how the model selects tokens for output. Tokens are selected from the most (see top-K) to least probable until the sum of their probabilities equals the top-P value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-P value is 0.5, then the model will select either A or B as the next token by using temperature and excludes C as a candidate.\nSpecify a lower value for less random responses and a higher value for more random responses.\n',
ge=0.0,
le=1.0,
)
class GeminiMimeType(str, Enum):
application_pdf = 'application/pdf'
audio_mpeg = 'audio/mpeg'
audio_mp3 = 'audio/mp3'
audio_wav = 'audio/wav'
image_png = 'image/png'
image_jpeg = 'image/jpeg'
image_webp = 'image/webp'
text_plain = 'text/plain'
video_mov = 'video/mov'
video_mpeg = 'video/mpeg'
video_mp4 = 'video/mp4'
video_mpg = 'video/mpg'
video_avi = 'video/avi'
video_wmv = 'video/wmv'
video_mpegps = 'video/mpegps'
video_flv = 'video/flv'
class GeminiOffset(BaseModel):
nanos: Optional[int] = Field(
None,
description='Signed fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values.\n',
examples=[0],
ge=0,
le=999999999,
)
seconds: Optional[int] = Field(
None,
description='Signed seconds of the span of time. Must be from -315,576,000,000 to +315,576,000,000 inclusive.\n',
examples=[60],
ge=-315576000000,
le=315576000000,
)
class GeminiSafetyCategory(str, Enum):
HARM_CATEGORY_SEXUALLY_EXPLICIT = 'HARM_CATEGORY_SEXUALLY_EXPLICIT'
HARM_CATEGORY_HATE_SPEECH = 'HARM_CATEGORY_HATE_SPEECH'
HARM_CATEGORY_HARASSMENT = 'HARM_CATEGORY_HARASSMENT'
HARM_CATEGORY_DANGEROUS_CONTENT = 'HARM_CATEGORY_DANGEROUS_CONTENT'
class Probability(str, Enum):
NEGLIGIBLE = 'NEGLIGIBLE'
LOW = 'LOW'
MEDIUM = 'MEDIUM'
HIGH = 'HIGH'
UNKNOWN = 'UNKNOWN'
class GeminiSafetyRating(BaseModel):
category: Optional[GeminiSafetyCategory] = None
probability: Optional[Probability] = Field(
None,
description='The probability that the content violates the specified safety category',
)
class GeminiSafetyThreshold(str, Enum):
OFF = 'OFF'
BLOCK_NONE = 'BLOCK_NONE'
BLOCK_LOW_AND_ABOVE = 'BLOCK_LOW_AND_ABOVE'
BLOCK_MEDIUM_AND_ABOVE = 'BLOCK_MEDIUM_AND_ABOVE'
BLOCK_ONLY_HIGH = 'BLOCK_ONLY_HIGH'
class GeminiTextPart(BaseModel):
text: Optional[str] = Field(
None,
description='A text prompt or code snippet.',
examples=['Answer as concisely as possible'],
)
class GeminiTool(BaseModel):
functionDeclarations: Optional[List[GeminiFunctionDeclaration]] = None
class GeminiVideoMetadata(BaseModel):
endOffset: Optional[GeminiOffset] = None
startOffset: Optional[GeminiOffset] = None
class IdeogramColorPalette1(BaseModel):
name: str = Field(..., description='Name of the preset color palette')
class Member(BaseModel):
color: Optional[str] = Field(
None, description='Hexadecimal color code', pattern='^#[0-9A-Fa-f]{6}$'
)
weight: Optional[float] = Field(
None, description='Optional weight for the color (0-1)', ge=0.0, le=1.0
)
class IdeogramColorPalette2(BaseModel):
members: List[Member] = Field(
..., description='Array of color definitions with optional weights'
)
class IdeogramColorPalette(
RootModel[Union[IdeogramColorPalette1, IdeogramColorPalette2]]
):
root: Union[IdeogramColorPalette1, IdeogramColorPalette2] = Field(
...,
description='A color palette specification that can either use a preset name or explicit color definitions with weights',
)
class ImageRequest(BaseModel):
aspect_ratio: Optional[str] = Field(
None,
description="Optional. The aspect ratio (e.g., 'ASPECT_16_9', 'ASPECT_1_1'). Cannot be used with resolution. Defaults to 'ASPECT_1_1' if unspecified.",
)
color_palette: Optional[Dict[str, Any]] = Field(
None, description='Optional. Color palette object. Only for V_2, V_2_TURBO.'
)
magic_prompt_option: Optional[str] = Field(
None, description="Optional. MagicPrompt usage ('AUTO', 'ON', 'OFF')."
)
model: str = Field(..., description="The model used (e.g., 'V_2', 'V_2A_TURBO')")
negative_prompt: Optional[str] = Field(
None,
description='Optional. Description of what to exclude. Only for V_1, V_1_TURBO, V_2, V_2_TURBO.',
)
num_images: Optional[int] = Field(
1,
description='Optional. Number of images to generate (1-8). Defaults to 1.',
ge=1,
le=8,
)
prompt: str = Field(
..., description='Required. The prompt to use to generate the image.'
)
resolution: Optional[str] = Field(
None,
description="Optional. Resolution (e.g., 'RESOLUTION_1024_1024'). Only for model V_2. Cannot be used with aspect_ratio.",
)
seed: Optional[int] = Field(
None,
description='Optional. A number between 0 and 2147483647.',
ge=0,
le=2147483647,
)
style_type: Optional[str] = Field(
None,
description="Optional. Style type ('AUTO', 'GENERAL', 'REALISTIC', 'DESIGN', 'RENDER_3D', 'ANIME'). Only for models V_2 and above.",
)
class IdeogramGenerateRequest(BaseModel):
image_request: ImageRequest = Field(
..., description='The image generation request parameters.'
)
class Datum(BaseModel):
is_image_safe: Optional[bool] = Field(
None, description='Indicates whether the image is considered safe.'
)
prompt: Optional[str] = Field(
None, description='The prompt used to generate this image.'
)
resolution: Optional[str] = Field(
None, description="The resolution of the generated image (e.g., '1024x1024')."
)
seed: Optional[int] = Field(
None, description='The seed value used for this generation.'
)
style_type: Optional[str] = Field(
None,
description="The style type used for generation (e.g., 'REALISTIC', 'ANIME').",
)
url: Optional[str] = Field(None, description='URL to the generated image.')
class IdeogramGenerateResponse(BaseModel):
created: Optional[datetime] = Field(
None, description='Timestamp when the generation was created.'
)
data: Optional[List[Datum]] = Field(
None, description='Array of generated image information.'
)
class StyleCode(RootModel[str]):
root: str = Field(..., pattern='^[0-9A-Fa-f]{8}$')
class Datum1(BaseModel):
is_image_safe: Optional[bool] = None
prompt: Optional[str] = None
resolution: Optional[str] = None
seed: Optional[int] = None
style_type: Optional[str] = None
url: Optional[str] = None
class IdeogramV3IdeogramResponse(BaseModel):
created: Optional[datetime] = None
data: Optional[List[Datum1]] = None
class RenderingSpeed1(str, Enum):
TURBO = 'TURBO'
DEFAULT = 'DEFAULT'
QUALITY = 'QUALITY'
class IdeogramV3ReframeRequest(BaseModel):
color_palette: Optional[Dict[str, Any]] = None
image: Optional[StrictBytes] = None
num_images: Optional[int] = Field(None, ge=1, le=8)
rendering_speed: Optional[RenderingSpeed1] = None
resolution: str
seed: Optional[int] = Field(None, ge=0, le=2147483647)
style_codes: Optional[List[str]] = None
style_reference_images: Optional[List[StrictBytes]] = None
class MagicPrompt(str, Enum):
AUTO = 'AUTO'
ON = 'ON'
OFF = 'OFF'
class StyleType(str, Enum):
AUTO = 'AUTO'
GENERAL = 'GENERAL'
REALISTIC = 'REALISTIC'
DESIGN = 'DESIGN'
class IdeogramV3RemixRequest(BaseModel):
aspect_ratio: Optional[str] = None
color_palette: Optional[Dict[str, Any]] = None
image: Optional[StrictBytes] = None
image_weight: Optional[int] = Field(50, ge=1, le=100)
magic_prompt: Optional[MagicPrompt] = None
negative_prompt: Optional[str] = None
num_images: Optional[int] = Field(None, ge=1, le=8)
prompt: str
rendering_speed: Optional[RenderingSpeed1] = None
resolution: Optional[str] = None
seed: Optional[int] = Field(None, ge=0, le=2147483647)
style_codes: Optional[List[str]] = None
style_reference_images: Optional[List[StrictBytes]] = None
style_type: Optional[StyleType] = None
class IdeogramV3ReplaceBackgroundRequest(BaseModel):
color_palette: Optional[Dict[str, Any]] = None
image: Optional[StrictBytes] = None
magic_prompt: Optional[MagicPrompt] = None
num_images: Optional[int] = Field(None, ge=1, le=8)
prompt: str
rendering_speed: Optional[RenderingSpeed1] = None
seed: Optional[int] = Field(None, ge=0, le=2147483647)
style_codes: Optional[List[str]] = None
style_reference_images: Optional[List[StrictBytes]] = None
class ColorPalette(BaseModel):
name: str = Field(..., description='Name of the color palette', examples=['PASTEL'])
class MagicPrompt2(str, Enum):
ON = 'ON'
OFF = 'OFF'
class StyleType1(str, Enum):
GENERAL = 'GENERAL'
class ImagenImageGenerationInstance(BaseModel):
prompt: str = Field(..., description='Text prompt for image generation')
class AspectRatio(str, Enum):
field_1_1 = '1:1'
field_9_16 = '9:16'
field_16_9 = '16:9'
field_3_4 = '3:4'
field_4_3 = '4:3'
class PersonGeneration(str, Enum):
dont_allow = 'dont_allow'
allow_adult = 'allow_adult'
allow_all = 'allow_all'
class SafetySetting(str, Enum):
block_most = 'block_most'
block_some = 'block_some'
block_few = 'block_few'
block_fewest = 'block_fewest'
class ImagenImagePrediction(BaseModel):
bytesBase64Encoded: Optional[str] = Field(
None, description='Base64-encoded image content'
)
mimeType: Optional[str] = Field(
None, description='MIME type of the generated image'
)
prompt: Optional[str] = Field(
None, description='Enhanced or rewritten prompt used to generate this image'
)
class MimeType(str, Enum):
image_png = 'image/png'
image_jpeg = 'image/jpeg'
class ImagenOutputOptions(BaseModel):
compressionQuality: Optional[int] = Field(None, ge=0, le=100)
mimeType: Optional[MimeType] = None
class Includable(str, Enum):
file_search_call_results = 'file_search_call.results'
message_input_image_image_url = 'message.input_image.image_url'
computer_call_output_output_image_url = 'computer_call_output.output.image_url'
class Type7(str, Enum):
input_file = 'input_file'
class InputFileContent(BaseModel):
file_data: Optional[str] = Field(
None, description='The content of the file to be sent to the model.\n'
)
file_id: Optional[str] = Field(
None, description='The ID of the file to be sent to the model.'
)
filename: Optional[str] = Field(
None, description='The name of the file to be sent to the model.'
)
type: Type7 = Field(
..., description='The type of the input item. Always `input_file`.'
)
class Detail(str, Enum):
low = 'low'
high = 'high'
auto = 'auto'
class Type8(str, Enum):
input_image = 'input_image'
class InputImageContent(BaseModel):
detail: Detail = Field(
...,
description='The detail level of the image to be sent to the model. One of `high`, `low`, or `auto`. Defaults to `auto`.',
)
file_id: Optional[str] = Field(
None, description='The ID of the file to be sent to the model.'
)
image_url: Optional[str] = Field(
None,
description='The URL of the image to be sent to the model. A fully qualified URL or base64 encoded image in a data URL.',
)
type: Type8 = Field(
..., description='The type of the input item. Always `input_image`.'
)
class Role3(str, Enum):
user = 'user'
system = 'system'
developer = 'developer'
class Type9(str, Enum):
message = 'message'
class Type10(str, Enum):
input_text = 'input_text'
class InputTextContent(BaseModel):
text: str = Field(..., description='The text input to the model.')
type: Type10 = Field(
..., description='The type of the input item. Always `input_text`.'
)
class KlingAudioUploadType(str, Enum):
file = 'file'
url = 'url'
class KlingCameraConfig(BaseModel):
horizontal: Optional[float] = Field(
None,
description="Controls camera's movement along horizontal axis (x-axis). Negative indicates left, positive indicates right.",
ge=-10.0,
le=10.0,
)
pan: Optional[float] = Field(
None,
description="Controls camera's rotation in vertical plane (x-axis). Negative indicates downward rotation, positive indicates upward rotation.",
ge=-10.0,
le=10.0,
)
roll: Optional[float] = Field(
None,
description="Controls camera's rolling amount (z-axis). Negative indicates counterclockwise, positive indicates clockwise.",
ge=-10.0,
le=10.0,
)
tilt: Optional[float] = Field(
None,
description="Controls camera's rotation in horizontal plane (y-axis). Negative indicates left rotation, positive indicates right rotation.",
ge=-10.0,
le=10.0,
)
vertical: Optional[float] = Field(
None,
description="Controls camera's movement along vertical axis (y-axis). Negative indicates downward, positive indicates upward.",
ge=-10.0,
le=10.0,
)
zoom: Optional[float] = Field(
None,
description="Controls change in camera's focal length. Negative indicates narrower field of view, positive indicates wider field of view.",
ge=-10.0,
le=10.0,
)
class KlingCameraControlType(str, Enum):
simple = 'simple'
down_back = 'down_back'
forward_up = 'forward_up'
right_turn_forward = 'right_turn_forward'
left_turn_forward = 'left_turn_forward'
class KlingCharacterEffectModelName(str, Enum):
kling_v1 = 'kling-v1'
kling_v1_5 = 'kling-v1-5'
kling_v1_6 = 'kling-v1-6'
class KlingDualCharacterEffectsScene(str, Enum):
hug = 'hug'
kiss = 'kiss'
heart_gesture = 'heart_gesture'
class KlingDualCharacterImages(RootModel[List[str]]):
root: List[str] = Field(..., max_length=2, min_length=2)
class KlingErrorResponse(BaseModel):
code: int = Field(
...,
description='- 1000: Authentication failed\n- 1001: Authorization is empty\n- 1002: Authorization is invalid\n- 1003: Authorization is not yet valid\n- 1004: Authorization has expired\n- 1100: Account exception\n- 1101: Account in arrears (postpaid scenario)\n- 1102: Resource pack depleted or expired (prepaid scenario)\n- 1103: Unauthorized access to requested resource\n- 1200: Invalid request parameters\n- 1201: Invalid parameters\n- 1202: Invalid request method\n- 1203: Requested resource does not exist\n- 1300: Trigger platform strategy\n- 1301: Trigger content security policy\n- 1302: API request too frequent\n- 1303: Concurrency/QPS exceeds limit\n- 1304: Trigger IP whitelist policy\n- 5000: Internal server error\n- 5001: Service temporarily unavailable\n- 5002: Server internal timeout\n',
)
message: str = Field(..., description='Human-readable error message')
request_id: str = Field(
..., description='Request ID for tracking and troubleshooting'
)
class Trajectory(BaseModel):
x: Optional[int] = Field(
None,
description='The horizontal coordinate of trajectory point. Based on bottom-left corner of image as origin (0,0).',
)
y: Optional[int] = Field(
None,
description='The vertical coordinate of trajectory point. Based on bottom-left corner of image as origin (0,0).',
)
class DynamicMask(BaseModel):
mask: Optional[AnyUrl] = Field(
None,
description='Dynamic Brush Application Area (Mask image created by users using the motion brush). The aspect ratio must match the input image.',
)
trajectories: Optional[List[Trajectory]] = None
class TaskInfo(BaseModel):
external_task_id: Optional[str] = None
class KlingImageGenAspectRatio(str, Enum):
field_16_9 = '16:9'
field_9_16 = '9:16'
field_1_1 = '1:1'
field_4_3 = '4:3'
field_3_4 = '3:4'
field_3_2 = '3:2'
field_2_3 = '2:3'
field_21_9 = '21:9'
class KlingImageGenImageReferenceType(str, Enum):
subject = 'subject'
face = 'face'
class KlingImageGenModelName(str, Enum):
kling_v1 = 'kling-v1'
kling_v1_5 = 'kling-v1-5'
kling_v2 = 'kling-v2'
class KlingImageGenerationsRequest(BaseModel):
aspect_ratio: Optional[KlingImageGenAspectRatio] = '16:9'
callback_url: Optional[AnyUrl] = Field(
None, description='The callback notification address'
)
human_fidelity: Optional[float] = Field(
0.45, description='Subject reference similarity', ge=0.0, le=1.0
)
image: Optional[str] = Field(
None, description='Reference Image - Base64 encoded string or image URL'
)
image_fidelity: Optional[float] = Field(
0.5, description='Reference intensity for user-uploaded images', ge=0.0, le=1.0
)
image_reference: Optional[KlingImageGenImageReferenceType] = None
model_name: Optional[KlingImageGenModelName] = 'kling-v1'
n: Optional[int] = Field(1, description='Number of generated images', ge=1, le=9)
negative_prompt: Optional[str] = Field(
None, description='Negative text prompt', max_length=200
)
prompt: str = Field(..., description='Positive text prompt', max_length=500)
class KlingImageResult(BaseModel):
index: Optional[int] = Field(None, description='Image Number (0-9)')
url: Optional[AnyUrl] = Field(None, description='URL for generated image')
class KlingLipSyncMode(str, Enum):
text2video = 'text2video'
audio2video = 'audio2video'
class KlingLipSyncVoiceLanguage(str, Enum):
zh = 'zh'
en = 'en'
class ResourcePackType(str, Enum):
decreasing_total = 'decreasing_total'
constant_period = 'constant_period'
class Status4(str, Enum):
toBeOnline = 'toBeOnline'
online = 'online'
expired = 'expired'
runOut = 'runOut'
class ResourcePackSubscribeInfo(BaseModel):
effective_time: Optional[int] = Field(
None, description='Effective time, Unix timestamp in ms'
)
invalid_time: Optional[int] = Field(
None, description='Expiration time, Unix timestamp in ms'
)
purchase_time: Optional[int] = Field(
None, description='Purchase time, Unix timestamp in ms'
)
remaining_quantity: Optional[float] = Field(
None, description='Remaining quantity (updated with a 12-hour delay)'
)
resource_pack_id: Optional[str] = Field(None, description='Resource package ID')
resource_pack_name: Optional[str] = Field(None, description='Resource package name')
resource_pack_type: Optional[ResourcePackType] = Field(
None,
description='Resource package type (decreasing_total=decreasing total, constant_period=constant periodicity)',
)
status: Optional[Status4] = Field(None, description='Resource Package Status')
total_quantity: Optional[float] = Field(None, description='Total quantity')
class Data3(BaseModel):
code: Optional[int] = Field(None, description='Error code; 0 indicates success')
msg: Optional[str] = Field(None, description='Error information')
resource_pack_subscribe_infos: Optional[List[ResourcePackSubscribeInfo]] = Field(
None, description='Resource package list'
)
class KlingResourcePackageResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code; 0 indicates success')
data: Optional[Data3] = None
message: Optional[str] = Field(None, description='Error information')
request_id: Optional[str] = Field(
None,
description='Request ID, generated by the system, used to track requests and troubleshoot problems',
)
class KlingSingleImageEffectDuration(str, Enum):
field_5 = '5'
class KlingSingleImageEffectModelName(str, Enum):
kling_v1_6 = 'kling-v1-6'
class KlingSingleImageEffectsScene(str, Enum):
bloombloom = 'bloombloom'
dizzydizzy = 'dizzydizzy'
fuzzyfuzzy = 'fuzzyfuzzy'
squish = 'squish'
expansion = 'expansion'
class KlingTaskStatus(str, Enum):
submitted = 'submitted'
processing = 'processing'
succeed = 'succeed'
failed = 'failed'
class KlingTextToVideoModelName(str, Enum):
kling_v1 = 'kling-v1'
kling_v1_6 = 'kling-v1-6'
class KlingVideoGenAspectRatio(str, Enum):
field_16_9 = '16:9'
field_9_16 = '9:16'
field_1_1 = '1:1'
class KlingVideoGenCfgScale(RootModel[float]):
root: float = Field(
...,
description="Flexibility in video generation. The higher the value, the lower the model's degree of flexibility, and the stronger the relevance to the user's prompt.",
ge=0.0,
le=1.0,
)
class KlingVideoGenDuration(str, Enum):
field_5 = '5'
field_10 = '10'
class KlingVideoGenMode(str, Enum):
std = 'std'
pro = 'pro'
class KlingVideoGenModelName(str, Enum):
kling_v1 = 'kling-v1'
kling_v1_5 = 'kling-v1-5'
kling_v1_6 = 'kling-v1-6'
kling_v2_master = 'kling-v2-master'
class KlingVideoResult(BaseModel):
duration: Optional[str] = Field(None, description='Total video duration')
id: Optional[str] = Field(None, description='Generated video ID')
url: Optional[AnyUrl] = Field(None, description='URL for generated video')
class KlingVirtualTryOnModelName(str, Enum):
kolors_virtual_try_on_v1 = 'kolors-virtual-try-on-v1'
kolors_virtual_try_on_v1_5 = 'kolors-virtual-try-on-v1-5'
class KlingVirtualTryOnRequest(BaseModel):
callback_url: Optional[AnyUrl] = Field(
None, description='The callback notification address'
)
cloth_image: Optional[str] = Field(
None,
description='Reference clothing image - Base64 encoded string or image URL',
)
human_image: str = Field(
..., description='Reference human image - Base64 encoded string or image URL'
)
model_name: Optional[KlingVirtualTryOnModelName] = 'kolors-virtual-try-on-v1'
class TaskResult6(BaseModel):
images: Optional[List[KlingImageResult]] = None
class Data7(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_result: Optional[TaskResult6] = None
task_status: Optional[KlingTaskStatus] = None
task_status_msg: Optional[str] = Field(None, description='Task status information')
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingVirtualTryOnResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data7] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class LumaAspectRatio(str, Enum):
field_1_1 = '1:1'
field_16_9 = '16:9'
field_9_16 = '9:16'
field_4_3 = '4:3'
field_3_4 = '3:4'
field_21_9 = '21:9'
field_9_21 = '9:21'
class LumaAssets(BaseModel):
image: Optional[AnyUrl] = Field(None, description='The URL of the image')
progress_video: Optional[AnyUrl] = Field(
None, description='The URL of the progress video'
)
video: Optional[AnyUrl] = Field(None, description='The URL of the video')
class GenerationType(str, Enum):
add_audio = 'add_audio'
class LumaAudioGenerationRequest(BaseModel):
callback_url: Optional[AnyUrl] = Field(
None, description='The callback URL for the audio'
)
generation_type: Optional[GenerationType] = 'add_audio'
negative_prompt: Optional[str] = Field(
None, description='The negative prompt of the audio'
)
prompt: Optional[str] = Field(None, description='The prompt of the audio')
class LumaError(BaseModel):
detail: Optional[str] = Field(None, description='The error message')
class Type11(str, Enum):
generation = 'generation'
class LumaGenerationReference(BaseModel):
id: UUID = Field(..., description='The ID of the generation')
type: Literal['generation']
class GenerationType1(str, Enum):
video = 'video'
class LumaGenerationType(str, Enum):
video = 'video'
image = 'image'
class GenerationType2(str, Enum):
image = 'image'
class LumaImageIdentity(BaseModel):
images: Optional[List[AnyUrl]] = Field(
None, description='The URLs of the image identity'
)
class LumaImageModel(str, Enum):
photon_1 = 'photon-1'
photon_flash_1 = 'photon-flash-1'
class LumaImageRef(BaseModel):
url: Optional[AnyUrl] = Field(None, description='The URL of the image reference')
weight: Optional[float] = Field(
None, description='The weight of the image reference'
)
class Type12(str, Enum):
image = 'image'
class LumaImageReference(BaseModel):
type: Literal['image']
url: AnyUrl = Field(..., description='The URL of the image')
class LumaKeyframe(RootModel[Union[LumaGenerationReference, LumaImageReference]]):
root: Union[LumaGenerationReference, LumaImageReference] = Field(
...,
description='A keyframe can be either a Generation reference, an Image, or a Video',
discriminator='type',
)
class LumaKeyframes(BaseModel):
frame0: Optional[LumaKeyframe] = None
frame1: Optional[LumaKeyframe] = None
class LumaModifyImageRef(BaseModel):
url: Optional[AnyUrl] = Field(None, description='The URL of the image reference')
weight: Optional[float] = Field(
None, description='The weight of the modify image reference'
)
class LumaState(str, Enum):
queued = 'queued'
dreaming = 'dreaming'
completed = 'completed'
failed = 'failed'
class GenerationType3(str, Enum):
upscale_video = 'upscale_video'
class LumaVideoModel(str, Enum):
ray_2 = 'ray-2'
ray_flash_2 = 'ray-flash-2'
ray_1_6 = 'ray-1-6'
class LumaVideoModelOutputDuration1(str, Enum):
field_5s = '5s'
field_9s = '9s'
class LumaVideoModelOutputDuration(
RootModel[Union[LumaVideoModelOutputDuration1, str]]
):
root: Union[LumaVideoModelOutputDuration1, str]
class LumaVideoModelOutputResolution1(str, Enum):
field_540p = '540p'
field_720p = '720p'
field_1080p = '1080p'
field_4k = '4k'
class LumaVideoModelOutputResolution(
RootModel[Union[LumaVideoModelOutputResolution1, str]]
):
root: Union[LumaVideoModelOutputResolution1, str]
class MinimaxBaseResponse(BaseModel):
status_code: int = Field(
...,
description='Status code. 0 indicates success, other values indicate errors.',
)
status_msg: str = Field(
..., description='Specific error details or success message.'
)
class File(BaseModel):
bytes: Optional[int] = Field(None, description='File size in bytes')
created_at: Optional[int] = Field(
None, description='Unix timestamp when the file was created, in seconds'
)
download_url: Optional[str] = Field(
None, description='The URL to download the video'
)
file_id: Optional[int] = Field(None, description='Unique identifier for the file')
filename: Optional[str] = Field(None, description='The name of the file')
purpose: Optional[str] = Field(None, description='The purpose of using the file')
class MinimaxFileRetrieveResponse(BaseModel):
base_resp: MinimaxBaseResponse
file: File
class Status5(str, Enum):
Queueing = 'Queueing'
Preparing = 'Preparing'
Processing = 'Processing'
Success = 'Success'
Fail = 'Fail'
class MinimaxTaskResultResponse(BaseModel):
base_resp: MinimaxBaseResponse
file_id: Optional[str] = Field(
None,
description='After the task status changes to Success, this field returns the file ID corresponding to the generated video.',
)
status: Status5 = Field(
...,
description="Task status: 'Queueing' (in queue), 'Preparing' (task is preparing), 'Processing' (generating), 'Success' (task completed successfully), or 'Fail' (task failed).",
)
task_id: str = Field(..., description='The task ID being queried.')
class Model(str, Enum):
T2V_01_Director = 'T2V-01-Director'
I2V_01_Director = 'I2V-01-Director'
S2V_01 = 'S2V-01'
I2V_01 = 'I2V-01'
I2V_01_live = 'I2V-01-live'
T2V_01 = 'T2V-01'
class SubjectReferenceItem(BaseModel):
image: Optional[str] = Field(
None, description='URL or base64 encoding of the subject reference image.'
)
mask: Optional[str] = Field(
None,
description='URL or base64 encoding of the mask for the subject reference image.',
)
class MinimaxVideoGenerationRequest(BaseModel):
callback_url: Optional[str] = Field(
None,
description='Optional. URL to receive real-time status updates about the video generation task.',
)
first_frame_image: Optional[str] = Field(
None,
description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.',
)
model: Model = Field(
...,
description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01',
)
prompt: Optional[str] = Field(
None,
description='Description of the video. Should be less than 2000 characters. Supports camera movement instructions in [brackets].',
max_length=2000,
)
prompt_optimizer: Optional[bool] = Field(
True,
description='If true (default), the model will automatically optimize the prompt. Set to false for more precise control.',
)
subject_reference: Optional[List[SubjectReferenceItem]] = Field(
None,
description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.',
)
class MinimaxVideoGenerationResponse(BaseModel):
base_resp: MinimaxBaseResponse
task_id: str = Field(
..., description='The task ID for the asynchronous video generation task.'
)
class Truncation(str, Enum):
disabled = 'disabled'
auto = 'auto'
class ModelResponseProperties(BaseModel):
instructions: Optional[str] = Field(
None, description='Instructions for the model on how to generate the response'
)
max_output_tokens: Optional[int] = Field(
None, description='Maximum number of tokens to generate'
)
model: Optional[str] = Field(
None, description='The model used to generate the response'
)
temperature: Optional[float] = Field(
1, description='Controls randomness in the response', ge=0.0, le=2.0
)
top_p: Optional[float] = Field(
1,
description='Controls diversity of the response via nucleus sampling',
ge=0.0,
le=1.0,
)
truncation: Optional[Truncation] = Field(
'disabled', description='How to handle truncation of the response'
)
class Moderation(str, Enum):
low = 'low'
auto = 'auto'
class OutputFormat1(str, Enum):
png = 'png'
webp = 'webp'
jpeg = 'jpeg'
class OpenAIImageEditRequest(BaseModel):
background: Optional[str] = Field(
None, description='Background transparency', examples=['opaque']
)
model: str = Field(
..., description='The model to use for image editing', examples=['gpt-image-1']
)
moderation: Optional[Moderation] = Field(
None, description='Content moderation setting', examples=['auto']
)
n: Optional[int] = Field(
None, description='The number of images to generate', examples=[1]
)
output_compression: Optional[int] = Field(
None, description='Compression level for JPEG or WebP (0-100)', examples=[100]
)
output_format: Optional[OutputFormat1] = Field(
None, description='Format of the output image', examples=['png']
)
prompt: str = Field(
...,
description='A text description of the desired edit',
examples=['Give the rocketship rainbow coloring'],
)
quality: Optional[str] = Field(
None, description='The quality of the edited image', examples=['low']
)
size: Optional[str] = Field(
None, description='Size of the output image', examples=['1024x1024']
)
user: Optional[str] = Field(
None,
description='A unique identifier for end-user monitoring',
examples=['user-1234'],
)
class Background(str, Enum):
transparent = 'transparent'
opaque = 'opaque'
class Quality(str, Enum):
low = 'low'
medium = 'medium'
high = 'high'
standard = 'standard'
hd = 'hd'
class ResponseFormat(str, Enum):
url = 'url'
b64_json = 'b64_json'
class Style(str, Enum):
vivid = 'vivid'
natural = 'natural'
class OpenAIImageGenerationRequest(BaseModel):
background: Optional[Background] = Field(
None, description='Background transparency', examples=['opaque']
)
model: Optional[str] = Field(
None, description='The model to use for image generation', examples=['dall-e-3']
)
moderation: Optional[Moderation] = Field(
None, description='Content moderation setting', examples=['auto']
)
n: Optional[int] = Field(
None,
description='The number of images to generate (1-10). Only 1 supported for dall-e-3.',
examples=[1],
)
output_compression: Optional[int] = Field(
None, description='Compression level for JPEG or WebP (0-100)', examples=[100]
)
output_format: Optional[OutputFormat1] = Field(
None, description='Format of the output image', examples=['png']
)
prompt: str = Field(
...,
description='A text description of the desired image',
examples=['Draw a rocket in front of a blackhole in deep space'],
)
quality: Optional[Quality] = Field(
None, description='The quality of the generated image', examples=['high']
)
response_format: Optional[ResponseFormat] = Field(
None, description='Response format of image data', examples=['b64_json']
)
size: Optional[str] = Field(
None,
description='Size of the image (e.g., 1024x1024, 1536x1024, auto)',
examples=['1024x1536'],
)
style: Optional[Style] = Field(
None, description='Style of the image (only for dall-e-3)', examples=['vivid']
)
user: Optional[str] = Field(
None,
description='A unique identifier for end-user monitoring',
examples=['user-1234'],
)
class Datum2(BaseModel):
b64_json: Optional[str] = Field(None, description='Base64 encoded image data')
revised_prompt: Optional[str] = Field(None, description='Revised prompt')
url: Optional[str] = Field(None, description='URL of the image')
class InputTokensDetails(BaseModel):
image_tokens: Optional[int] = None
text_tokens: Optional[int] = None
class Usage(BaseModel):
input_tokens: Optional[int] = None
input_tokens_details: Optional[InputTokensDetails] = None
output_tokens: Optional[int] = None
total_tokens: Optional[int] = None
class OpenAIImageGenerationResponse(BaseModel):
data: Optional[List[Datum2]] = None
usage: Optional[Usage] = None
class OpenAIModels(str, Enum):
gpt_4 = 'gpt-4'
gpt_4_0314 = 'gpt-4-0314'
gpt_4_0613 = 'gpt-4-0613'
gpt_4_32k = 'gpt-4-32k'
gpt_4_32k_0314 = 'gpt-4-32k-0314'
gpt_4_32k_0613 = 'gpt-4-32k-0613'
gpt_4_0125_preview = 'gpt-4-0125-preview'
gpt_4_turbo = 'gpt-4-turbo'
gpt_4_turbo_2024_04_09 = 'gpt-4-turbo-2024-04-09'
gpt_4_turbo_preview = 'gpt-4-turbo-preview'
gpt_4_1106_preview = 'gpt-4-1106-preview'
gpt_4_vision_preview = 'gpt-4-vision-preview'
gpt_3_5_turbo = 'gpt-3.5-turbo'
gpt_3_5_turbo_16k = 'gpt-3.5-turbo-16k'
gpt_3_5_turbo_0301 = 'gpt-3.5-turbo-0301'
gpt_3_5_turbo_0613 = 'gpt-3.5-turbo-0613'
gpt_3_5_turbo_1106 = 'gpt-3.5-turbo-1106'
gpt_3_5_turbo_0125 = 'gpt-3.5-turbo-0125'
gpt_3_5_turbo_16k_0613 = 'gpt-3.5-turbo-16k-0613'
gpt_4_1 = 'gpt-4.1'
gpt_4_1_mini = 'gpt-4.1-mini'
gpt_4_1_nano = 'gpt-4.1-nano'
gpt_4_1_2025_04_14 = 'gpt-4.1-2025-04-14'
gpt_4_1_mini_2025_04_14 = 'gpt-4.1-mini-2025-04-14'
gpt_4_1_nano_2025_04_14 = 'gpt-4.1-nano-2025-04-14'
o1 = 'o1'
o1_mini = 'o1-mini'
o1_preview = 'o1-preview'
o1_pro = 'o1-pro'
o1_2024_12_17 = 'o1-2024-12-17'
o1_preview_2024_09_12 = 'o1-preview-2024-09-12'
o1_mini_2024_09_12 = 'o1-mini-2024-09-12'
o1_pro_2025_03_19 = 'o1-pro-2025-03-19'
o3 = 'o3'
o3_mini = 'o3-mini'
o3_2025_04_16 = 'o3-2025-04-16'
o3_mini_2025_01_31 = 'o3-mini-2025-01-31'
o4_mini = 'o4-mini'
o4_mini_2025_04_16 = 'o4-mini-2025-04-16'
gpt_4o = 'gpt-4o'
gpt_4o_mini = 'gpt-4o-mini'
gpt_4o_2024_11_20 = 'gpt-4o-2024-11-20'
gpt_4o_2024_08_06 = 'gpt-4o-2024-08-06'
gpt_4o_2024_05_13 = 'gpt-4o-2024-05-13'
gpt_4o_mini_2024_07_18 = 'gpt-4o-mini-2024-07-18'
gpt_4o_audio_preview = 'gpt-4o-audio-preview'
gpt_4o_audio_preview_2024_10_01 = 'gpt-4o-audio-preview-2024-10-01'
gpt_4o_audio_preview_2024_12_17 = 'gpt-4o-audio-preview-2024-12-17'
gpt_4o_mini_audio_preview = 'gpt-4o-mini-audio-preview'
gpt_4o_mini_audio_preview_2024_12_17 = 'gpt-4o-mini-audio-preview-2024-12-17'
gpt_4o_search_preview = 'gpt-4o-search-preview'
gpt_4o_mini_search_preview = 'gpt-4o-mini-search-preview'
gpt_4o_search_preview_2025_03_11 = 'gpt-4o-search-preview-2025-03-11'
gpt_4o_mini_search_preview_2025_03_11 = 'gpt-4o-mini-search-preview-2025-03-11'
computer_use_preview = 'computer-use-preview'
computer_use_preview_2025_03_11 = 'computer-use-preview-2025-03-11'
chatgpt_4o_latest = 'chatgpt-4o-latest'
class Reason(str, Enum):
max_output_tokens = 'max_output_tokens'
content_filter = 'content_filter'
class IncompleteDetails(BaseModel):
reason: Optional[Reason] = Field(
None, description='The reason why the response is incomplete.'
)
class Object(str, Enum):
response = 'response'
class Status6(str, Enum):
completed = 'completed'
failed = 'failed'
in_progress = 'in_progress'
incomplete = 'incomplete'
class Type13(str, Enum):
output_audio = 'output_audio'
class OutputAudioContent(BaseModel):
data: str = Field(..., description='Base64-encoded audio data')
transcript: str = Field(..., description='Transcript of the audio')
type: Type13 = Field(..., description='The type of output content')
class Role4(str, Enum):
assistant = 'assistant'
class Type14(str, Enum):
message = 'message'
class Type15(str, Enum):
output_text = 'output_text'
class OutputTextContent(BaseModel):
text: str = Field(..., description='The text content')
type: Type15 = Field(..., description='The type of output content')
class AspectRatio1(RootModel[float]):
root: float = Field(
...,
description='Aspect ratio (width / height)',
ge=0.4,
le=2.5,
title='Aspectratio',
)
class IngredientsMode(str, Enum):
creative = 'creative'
precise = 'precise'
class PikaBodyGenerate22C2vGenerate22PikascenesPost(BaseModel):
aspectRatio: Optional[AspectRatio1] = Field(
None, description='Aspect ratio (width / height)', title='Aspectratio'
)
duration: Optional[int] = Field(5, title='Duration')
images: Optional[List[StrictBytes]] = Field(None, title='Images')
ingredientsMode: IngredientsMode = Field(..., title='Ingredientsmode')
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
promptText: Optional[str] = Field(None, title='Prompttext')
resolution: Optional[str] = Field('1080p', title='Resolution')
seed: Optional[int] = Field(None, title='Seed')
class PikaBodyGeneratePikadditionsGeneratePikadditionsPost(BaseModel):
image: Optional[StrictBytes] = Field(None, title='Image')
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
promptText: Optional[str] = Field(None, title='Prompttext')
seed: Optional[int] = Field(None, title='Seed')
video: Optional[StrictBytes] = Field(None, title='Video')
class PikaBodyGeneratePikaswapsGeneratePikaswapsPost(BaseModel):
image: Optional[StrictBytes] = Field(None, title='Image')
modifyRegionMask: Optional[StrictBytes] = Field(
None,
description='A mask image that specifies the region to modify, where the mask is white and the background is black',
title='Modifyregionmask',
)
modifyRegionRoi: Optional[str] = Field(
None,
description='Plaintext description of the object / region to modify',
title='Modifyregionroi',
)
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
promptText: Optional[str] = Field(None, title='Prompttext')
seed: Optional[int] = Field(None, title='Seed')
video: Optional[StrictBytes] = Field(None, title='Video')
class PikaDurationEnum(int, Enum):
integer_5 = 5
integer_10 = 10
class PikaGenerateResponse(BaseModel):
video_id: str = Field(..., title='Video Id')
class PikaResolutionEnum(str, Enum):
field_1080p = '1080p'
field_720p = '720p'
class PikaStatusEnum(str, Enum):
queued = 'queued'
started = 'started'
finished = 'finished'
class PikaValidationError(BaseModel):
loc: List[Union[str, int]] = Field(..., title='Location')
msg: str = Field(..., title='Message')
type: str = Field(..., title='Error Type')
class PikaVideoResponse(BaseModel):
id: str = Field(..., title='Id')
progress: Optional[int] = Field(None, title='Progress')
status: PikaStatusEnum
url: Optional[str] = Field(None, title='Url')
class Pikaffect(str, Enum):
Cake_ify = 'Cake-ify'
Crumble = 'Crumble'
Crush = 'Crush'
Decapitate = 'Decapitate'
Deflate = 'Deflate'
Dissolve = 'Dissolve'
Explode = 'Explode'
Eye_pop = 'Eye-pop'
Inflate = 'Inflate'
Levitate = 'Levitate'
Melt = 'Melt'
Peel = 'Peel'
Poke = 'Poke'
Squish = 'Squish'
Ta_da = 'Ta-da'
Tear = 'Tear'
class Resp(BaseModel):
img_id: Optional[int] = None
class PixverseImageUploadResponse(BaseModel):
ErrCode: Optional[int] = None
ErrMsg: Optional[str] = None
Resp_1: Optional[Resp] = Field(None, alias='Resp')
class Duration(int, Enum):
integer_5 = 5
integer_8 = 8
class Model1(str, Enum):
v3_5 = 'v3.5'
class MotionMode(str, Enum):
normal = 'normal'
fast = 'fast'
class Quality1(str, Enum):
field_360p = '360p'
field_540p = '540p'
field_720p = '720p'
field_1080p = '1080p'
class Style1(str, Enum):
anime = 'anime'
field_3d_animation = '3d_animation'
clay = 'clay'
comic = 'comic'
cyberpunk = 'cyberpunk'
class PixverseImageVideoRequest(BaseModel):
duration: Duration
img_id: int
model: Model1
motion_mode: Optional[MotionMode] = None
prompt: str
quality: Quality1
seed: Optional[int] = None
style: Optional[Style1] = None
template_id: Optional[int] = None
water_mark: Optional[bool] = None
class AspectRatio2(str, Enum):
field_16_9 = '16:9'
field_4_3 = '4:3'
field_1_1 = '1:1'
field_3_4 = '3:4'
field_9_16 = '9:16'
class PixverseTextVideoRequest(BaseModel):
aspect_ratio: AspectRatio2
duration: Duration
model: Model1
motion_mode: Optional[MotionMode] = None
negative_prompt: Optional[str] = None
prompt: str
quality: Quality1
seed: Optional[int] = None
style: Optional[Style1] = None
template_id: Optional[int] = None
water_mark: Optional[bool] = None
class PixverseTransitionVideoRequest(BaseModel):
duration: Duration
first_frame_img: int
last_frame_img: int
model: Model1
motion_mode: MotionMode
prompt: str
quality: Quality1
seed: int
style: Optional[Style1] = None
template_id: Optional[int] = None
water_mark: Optional[bool] = None
class Resp1(BaseModel):
video_id: Optional[int] = None
class PixverseVideoResponse(BaseModel):
ErrCode: Optional[int] = None
ErrMsg: Optional[str] = None
Resp: Optional[Resp1] = None
class Status7(int, Enum):
integer_1 = 1
integer_5 = 5
integer_6 = 6
integer_7 = 7
integer_8 = 8
class Resp2(BaseModel):
create_time: Optional[str] = None
id: Optional[int] = None
modify_time: Optional[str] = None
negative_prompt: Optional[str] = None
outputHeight: Optional[int] = None
outputWidth: Optional[int] = None
prompt: Optional[str] = None
resolution_ratio: Optional[int] = None
seed: Optional[int] = None
size: Optional[int] = None
status: Optional[Status7] = Field(
None,
description='Video generation status codes:\n* 1 - Generation successful\n* 5 - Generating\n* 6 - Deleted\n* 7 - Contents moderation failed\n* 8 - Generation failed\n',
)
style: Optional[str] = None
url: Optional[str] = None
class PixverseVideoResultResponse(BaseModel):
ErrCode: Optional[int] = None
ErrMsg: Optional[str] = None
Resp: Optional[Resp2] = None
class RgbItem(RootModel[int]):
root: int = Field(..., ge=0, le=255)
class RGBColor(BaseModel):
rgb: List[RgbItem] = Field(..., max_length=3, min_length=3)
class GenerateSummary(str, Enum):
auto = 'auto'
concise = 'concise'
detailed = 'detailed'
class Summary(str, Enum):
auto = 'auto'
concise = 'concise'
detailed = 'detailed'
class ReasoningEffort(str, Enum):
low = 'low'
medium = 'medium'
high = 'high'
class Status8(str, Enum):
in_progress = 'in_progress'
completed = 'completed'
incomplete = 'incomplete'
class Type16(str, Enum):
summary_text = 'summary_text'
class SummaryItem(BaseModel):
text: str = Field(
...,
description='A short summary of the reasoning used by the model when generating\nthe response.\n',
)
type: Type16 = Field(
..., description='The type of the object. Always `summary_text`.\n'
)
class Type17(str, Enum):
reasoning = 'reasoning'
class ReasoningItem(BaseModel):
id: str = Field(
..., description='The unique identifier of the reasoning content.\n'
)
status: Optional[Status8] = Field(
None,
description='The status of the item. One of `in_progress`, `completed`, or\n`incomplete`. Populated when items are returned via API.\n',
)
summary: List[SummaryItem] = Field(..., description='Reasoning text contents.\n')
type: Type17 = Field(
..., description='The type of the object. Always `reasoning`.\n'
)
class Controls(BaseModel):
artistic_level: Optional[int] = Field(
None,
description='Defines artistic tone of your image. At a simple level, the person looks straight at the camera in a static and clean style. Dynamic and eccentric levels introduce movement and creativity.',
ge=0,
le=5,
)
background_color: Optional[RGBColor] = None
colors: Optional[List[RGBColor]] = Field(
None, description='An array of preferable colors'
)
no_text: Optional[bool] = Field(None, description='Do not embed text layouts')
class RecraftImageGenerationRequest(BaseModel):
controls: Optional[Controls] = Field(
None, description='The controls for the generated image'
)
model: str = Field(
..., description='The model to use for generation (e.g., "recraftv3")'
)
n: int = Field(..., description='The number of images to generate', ge=1, le=4)
prompt: str = Field(
..., description='The text prompt describing the image to generate'
)
size: str = Field(
..., description='The size of the generated image (e.g., "1024x1024")'
)
style: Optional[str] = Field(
None,
description='The style to apply to the generated image (e.g., "digital_illustration")',
)
style_id: Optional[str] = Field(
None,
description='The style ID to apply to the generated image (e.g., "123e4567-e89b-12d3-a456-426614174000"). If style_id is provided, style should not be provided.',
)
class Datum3(BaseModel):
image_id: Optional[str] = Field(
None, description='Unique identifier for the generated image'
)
url: Optional[str] = Field(None, description='URL to access the generated image')
class RecraftImageGenerationResponse(BaseModel):
created: int = Field(
..., description='Unix timestamp when the generation was created'
)
credits: int = Field(..., description='Number of credits used for the generation')
data: List[Datum3] = Field(..., description='Array of generated image information')
class RenderingSpeed(str, Enum):
BALANCED = 'BALANCED'
TURBO = 'TURBO'
QUALITY = 'QUALITY'
class ResponseErrorCode(str, Enum):
server_error = 'server_error'
rate_limit_exceeded = 'rate_limit_exceeded'
invalid_prompt = 'invalid_prompt'
vector_store_timeout = 'vector_store_timeout'
invalid_image = 'invalid_image'
invalid_image_format = 'invalid_image_format'
invalid_base64_image = 'invalid_base64_image'
invalid_image_url = 'invalid_image_url'
image_too_large = 'image_too_large'
image_too_small = 'image_too_small'
image_parse_error = 'image_parse_error'
image_content_policy_violation = 'image_content_policy_violation'
invalid_image_mode = 'invalid_image_mode'
image_file_too_large = 'image_file_too_large'
unsupported_image_media_type = 'unsupported_image_media_type'
empty_image_file = 'empty_image_file'
failed_to_download_image = 'failed_to_download_image'
image_file_not_found = 'image_file_not_found'
class Type18(str, Enum):
json_object = 'json_object'
class ResponseFormatJsonObject(BaseModel):
type: Type18 = Field(
...,
description='The type of response format being defined. Always `json_object`.',
)
class ResponseFormatJsonSchemaSchema(BaseModel):
pass
model_config = ConfigDict(
extra='allow',
)
class Type19(str, Enum):
text = 'text'
class ResponseFormatText(BaseModel):
type: Type19 = Field(
..., description='The type of response format being defined. Always `text`.'
)
class Truncation1(str, Enum):
auto = 'auto'
disabled = 'disabled'
class InputTokensDetails1(BaseModel):
cached_tokens: int = Field(
...,
description='The number of tokens that were retrieved from the cache. \n[More on prompt caching](/docs/guides/prompt-caching).\n',
)
class OutputTokensDetails(BaseModel):
reasoning_tokens: int = Field(..., description='The number of reasoning tokens.')
class ResponseUsage(BaseModel):
input_tokens: int = Field(..., description='The number of input tokens.')
input_tokens_details: InputTokensDetails1 = Field(
..., description='A detailed breakdown of the input tokens.'
)
output_tokens: int = Field(..., description='The number of output tokens.')
output_tokens_details: OutputTokensDetails = Field(
..., description='A detailed breakdown of the output tokens.'
)
total_tokens: int = Field(..., description='The total number of tokens used.')
class Rodin3DCheckStatusRequest(BaseModel):
subscription_key: str = Field(
..., description='subscription from generate endpoint'
)
class Rodin3DCheckStatusResponse(BaseModel):
pass
class Rodin3DDownloadRequest(BaseModel):
task_uuid: str = Field(..., description='Task UUID')
class RodinGenerateJobsData(BaseModel):
subscription_key: Optional[str] = Field(None, description='Subscription Key.')
uuids: Optional[List[str]] = Field(None, description='subjobs uuid.')
class RodinMaterialType(str, Enum):
PBR = 'PBR'
Shaded = 'Shaded'
class RodinMeshModeType(str, Enum):
Quad = 'Quad'
Raw = 'Raw'
class RodinQualityType(str, Enum):
extra_low = 'extra-low'
low = 'low'
medium = 'medium'
high = 'high'
class RodinResourceItem(BaseModel):
name: Optional[str] = Field(None, description='File name')
url: Optional[str] = Field(None, description='Download url')
class RodinTierType(str, Enum):
Regular = 'Regular'
Sketch = 'Sketch'
Detail = 'Detail'
Smooth = 'Smooth'
class RunwayAspectRatioEnum(str, Enum):
field_1280_720 = '1280:720'
field_720_1280 = '720:1280'
field_1104_832 = '1104:832'
field_832_1104 = '832:1104'
field_960_960 = '960:960'
field_1584_672 = '1584:672'
field_1280_768 = '1280:768'
field_768_1280 = '768:1280'
class RunwayDurationEnum(int, Enum):
integer_5 = 5
integer_10 = 10
class RunwayImageToVideoResponse(BaseModel):
id: Optional[str] = Field(None, description='Task ID')
class RunwayModelEnum(str, Enum):
gen4_turbo = 'gen4_turbo'
gen3a_turbo = 'gen3a_turbo'
class Position(str, Enum):
first = 'first'
last = 'last'
class RunwayPromptImageDetailedObject(BaseModel):
position: Position = Field(
...,
description="The position of the image in the output video. 'last' is currently supported for gen3a_turbo only.",
)
uri: str = Field(
..., description='A HTTPS URL or data URI containing an encoded image.'
)
class RunwayPromptImageObject(
RootModel[Union[str, List[RunwayPromptImageDetailedObject]]]
):
root: Union[str, List[RunwayPromptImageDetailedObject]] = Field(
...,
description='Image(s) to use for the video generation. Can be a single URI or an array of image objects with positions.',
)
class RunwayTaskStatusEnum(str, Enum):
SUCCEEDED = 'SUCCEEDED'
RUNNING = 'RUNNING'
FAILED = 'FAILED'
PENDING = 'PENDING'
CANCELLED = 'CANCELLED'
THROTTLED = 'THROTTLED'
class RunwayTaskStatusResponse(BaseModel):
createdAt: datetime = Field(..., description='Task creation timestamp')
id: str = Field(..., description='Task ID')
output: Optional[List[str]] = Field(None, description='Array of output video URLs')
progress: Optional[float] = Field(
None,
description='Float value between 0 and 1 representing the progress of the task. Only available if status is RUNNING.',
ge=0.0,
le=1.0,
)
status: RunwayTaskStatusEnum
class RunwayTextToImageAspectRatioEnum(str, Enum):
field_1920_1080 = '1920:1080'
field_1080_1920 = '1080:1920'
field_1024_1024 = '1024:1024'
field_1360_768 = '1360:768'
field_1080_1080 = '1080:1080'
field_1168_880 = '1168:880'
field_1440_1080 = '1440:1080'
field_1080_1440 = '1080:1440'
field_1808_768 = '1808:768'
field_2112_912 = '2112:912'
class Model4(str, Enum):
gen4_image = 'gen4_image'
class ReferenceImage(BaseModel):
uri: Optional[str] = Field(
None, description='A HTTPS URL or data URI containing an encoded image'
)
class RunwayTextToImageRequest(BaseModel):
model: Model4 = Field(..., description='Model to use for generation')
promptText: str = Field(
..., description='Text prompt for the image generation', max_length=1000
)
ratio: RunwayTextToImageAspectRatioEnum
referenceImages: Optional[List[ReferenceImage]] = Field(
None, description='Array of reference images to guide the generation'
)
class RunwayTextToImageResponse(BaseModel):
id: Optional[str] = Field(None, description='Task ID')
class StabilityError(BaseModel):
errors: List[str] = Field(
...,
description='One or more error messages indicating what went wrong.',
examples=[[{'some-field': 'is required'}]],
min_length=1,
)
id: str = Field(
...,
description='A unique identifier associated with this error. Please include this in any [support tickets](https://kb.stability.ai/knowledge-base/kb-tickets/new) you file, as it will greatly assist us in diagnosing the root cause of the problem.\n',
examples=['a1b2c3d4e5f6a1b2c3d4e5f6a1b2c3d4'],
min_length=1,
)
name: str = Field(
...,
description='Short-hand name for an error, useful for discriminating between errors with the same status code.',
examples=['bad_request'],
min_length=1,
)
class Status9(str, Enum):
in_progress = 'in-progress'
class StabilityGetResultResponse202(BaseModel):
id: Optional[str] = Field(
None, description='The ID of the generation result.', examples=[1234567890]
)
status: Optional[Status9] = None
class Type20(str, Enum):
json_schema = 'json_schema'
class TextResponseFormatJsonSchema(BaseModel):
description: Optional[str] = Field(
None,
description='A description of what the response format is for, used by the model to\ndetermine how to respond in the format.\n',
)
name: str = Field(
...,
description='The name of the response format. Must be a-z, A-Z, 0-9, or contain\nunderscores and dashes, with a maximum length of 64.\n',
)
schema_: ResponseFormatJsonSchemaSchema = Field(..., alias='schema')
strict: Optional[bool] = Field(
False,
description='Whether to enable strict schema adherence when generating the output.\nIf set to true, the model will always follow the exact schema defined\nin the `schema` field. Only a subset of JSON Schema is supported when\n`strict` is `true`. To learn more, read the [Structured Outputs\nguide](/docs/guides/structured-outputs).\n',
)
type: Type20 = Field(
...,
description='The type of response format being defined. Always `json_schema`.',
)
class Type21(str, Enum):
function = 'function'
class ToolChoiceFunction(BaseModel):
name: str = Field(..., description='The name of the function to call.')
type: Type21 = Field(
..., description='For function calling, the type is always `function`.'
)
class ToolChoiceOptions(str, Enum):
none = 'none'
auto = 'auto'
required = 'required'
class Type22(str, Enum):
file_search = 'file_search'
web_search_preview = 'web_search_preview'
computer_use_preview = 'computer_use_preview'
web_search_preview_2025_03_11 = 'web_search_preview_2025_03_11'
class ToolChoiceTypes(BaseModel):
type: Type22 = Field(
...,
description='The type of hosted tool the model should to use. Learn more about\n[built-in tools](/docs/guides/tools).\n\nAllowed values are:\n- `file_search`\n- `web_search_preview`\n- `computer_use_preview`\n',
)
class TripoAnimation(str, Enum):
preset_idle = 'preset:idle'
preset_walk = 'preset:walk'
preset_climb = 'preset:climb'
preset_jump = 'preset:jump'
preset_run = 'preset:run'
preset_slash = 'preset:slash'
preset_shoot = 'preset:shoot'
preset_hurt = 'preset:hurt'
preset_fall = 'preset:fall'
preset_turn = 'preset:turn'
class TripoBalance(BaseModel):
balance: float
frozen: float
class TripoConvertFormat(str, Enum):
GLTF = 'GLTF'
USDZ = 'USDZ'
FBX = 'FBX'
OBJ = 'OBJ'
STL = 'STL'
field_3MF = '3MF'
class Code(int, Enum):
integer_1001 = 1001
integer_2000 = 2000
integer_2001 = 2001
integer_2002 = 2002
integer_2003 = 2003
integer_2004 = 2004
integer_2006 = 2006
integer_2007 = 2007
integer_2008 = 2008
integer_2010 = 2010
class TripoErrorResponse(BaseModel):
code: Code
message: str
suggestion: str
class TripoImageToModel(str, Enum):
image_to_model = 'image_to_model'
class TripoModelStyle(str, Enum):
person_person2cartoon = 'person:person2cartoon'
animal_venom = 'animal:venom'
object_clay = 'object:clay'
object_steampunk = 'object:steampunk'
object_christmas = 'object:christmas'
object_barbie = 'object:barbie'
gold = 'gold'
ancient_bronze = 'ancient_bronze'
class TripoModelVersion(str, Enum):
V2_5 = 'v2.5-20250123'
V2_0 = 'v2.0-20240919'
V1_4 = 'v1.4-20240625'
class TripoMultiviewMode(str, Enum):
LEFT = 'LEFT'
RIGHT = 'RIGHT'
class TripoMultiviewToModel(str, Enum):
multiview_to_model = 'multiview_to_model'
class TripoOrientation(str, Enum):
align_image = 'align_image'
default = 'default'
class TripoResponseSuccessCode(RootModel[int]):
root: int = Field(
...,
description='Standard success code for Tripo API responses. Typically 0 for success.',
examples=[0],
)
class TripoSpec(str, Enum):
mixamo = 'mixamo'
tripo = 'tripo'
class TripoStandardFormat(str, Enum):
glb = 'glb'
fbx = 'fbx'
class TripoStylizeOptions(str, Enum):
lego = 'lego'
voxel = 'voxel'
voronoi = 'voronoi'
minecraft = 'minecraft'
class Code1(int, Enum):
integer_0 = 0
class Data8(BaseModel):
task_id: str = Field(..., description='used for getTask')
class TripoSuccessTask(BaseModel):
code: Code1
data: Data8
class Topology(str, Enum):
bip = 'bip'
quad = 'quad'
class Output(BaseModel):
base_model: Optional[str] = None
model: Optional[str] = None
pbr_model: Optional[str] = None
rendered_image: Optional[str] = None
riggable: Optional[bool] = None
topology: Optional[Topology] = None
class Status10(str, Enum):
queued = 'queued'
running = 'running'
success = 'success'
failed = 'failed'
cancelled = 'cancelled'
unknown = 'unknown'
banned = 'banned'
expired = 'expired'
class TripoTask(BaseModel):
create_time: int
input: Dict[str, Any]
output: Output
progress: int = Field(..., ge=0, le=100)
status: Status10
task_id: str
type: str
class TripoTextToModel(str, Enum):
text_to_model = 'text_to_model'
class TripoTextureAlignment(str, Enum):
original_image = 'original_image'
geometry = 'geometry'
class TripoTextureFormat(str, Enum):
BMP = 'BMP'
DPX = 'DPX'
HDR = 'HDR'
JPEG = 'JPEG'
OPEN_EXR = 'OPEN_EXR'
PNG = 'PNG'
TARGA = 'TARGA'
TIFF = 'TIFF'
WEBP = 'WEBP'
class TripoTextureQuality(str, Enum):
standard = 'standard'
detailed = 'detailed'
class TripoTopology(str, Enum):
bip = 'bip'
quad = 'quad'
class TripoTypeAnimatePrerigcheck(str, Enum):
animate_prerigcheck = 'animate_prerigcheck'
class TripoTypeAnimateRetarget(str, Enum):
animate_retarget = 'animate_retarget'
class TripoTypeAnimateRig(str, Enum):
animate_rig = 'animate_rig'
class TripoTypeConvertModel(str, Enum):
convert_model = 'convert_model'
class TripoTypeRefineModel(str, Enum):
refine_model = 'refine_model'
class TripoTypeStylizeModel(str, Enum):
stylize_model = 'stylize_model'
class TripoTypeTextureModel(str, Enum):
texture_model = 'texture_model'
class Veo2GenVidPollRequest(BaseModel):
operationName: str = Field(
...,
description='Full operation name (from predict response)',
examples=[
'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/OPERATION_ID'
],
)
class Error(BaseModel):
code: Optional[int] = Field(None, description='Error code')
message: Optional[str] = Field(None, description='Error message')
class Video(BaseModel):
bytesBase64Encoded: Optional[str] = Field(
None, description='Base64-encoded video content'
)
gcsUri: Optional[str] = Field(None, description='Cloud Storage URI of the video')
mimeType: Optional[str] = Field(None, description='Video MIME type')
class Response(BaseModel):
field_type: Optional[str] = Field(
None,
alias='@type',
examples=[
'type.googleapis.com/cloud.ai.large_models.vision.GenerateVideoResponse'
],
)
raiMediaFilteredCount: Optional[int] = Field(
None, description='Count of media filtered by responsible AI policies'
)
raiMediaFilteredReasons: Optional[List[str]] = Field(
None, description='Reasons why media was filtered by responsible AI policies'
)
videos: Optional[List[Video]] = None
class Veo2GenVidPollResponse(BaseModel):
done: Optional[bool] = None
error: Optional[Error] = Field(
None, description='Error details if operation failed'
)
name: Optional[str] = None
response: Optional[Response] = Field(
None, description='The actual prediction response if done is true'
)
class Image(BaseModel):
bytesBase64Encoded: str
gcsUri: Optional[str] = None
mimeType: Optional[str] = None
class Image1(BaseModel):
bytesBase64Encoded: Optional[str] = None
gcsUri: str
mimeType: Optional[str] = None
class Instance(BaseModel):
image: Optional[Union[Image, Image1]] = Field(
None, description='Optional image to guide video generation'
)
prompt: str = Field(..., description='Text description of the video')
class PersonGeneration1(str, Enum):
ALLOW = 'ALLOW'
BLOCK = 'BLOCK'
class Parameters(BaseModel):
aspectRatio: Optional[str] = Field(None, examples=['16:9'])
durationSeconds: Optional[int] = None
enhancePrompt: Optional[bool] = None
negativePrompt: Optional[str] = None
personGeneration: Optional[PersonGeneration1] = None
sampleCount: Optional[int] = None
seed: Optional[int] = None
storageUri: Optional[str] = Field(
None, description='Optional Cloud Storage URI to upload the video'
)
class Veo2GenVidRequest(BaseModel):
instances: Optional[List[Instance]] = None
parameters: Optional[Parameters] = None
class Veo2GenVidResponse(BaseModel):
name: str = Field(
...,
description='Operation resource name',
examples=[
'projects/PROJECT_ID/locations/us-central1/publishers/google/models/MODEL_ID/operations/a1b07c8e-7b5a-4aba-bb34-3e1ccb8afcc8'
],
)
class SearchContextSize(str, Enum):
low = 'low'
medium = 'medium'
high = 'high'
class Type23(str, Enum):
web_search_preview = 'web_search_preview'
web_search_preview_2025_03_11 = 'web_search_preview_2025_03_11'
class WebSearchPreviewTool(BaseModel):
search_context_size: Optional[SearchContextSize] = Field(
None,
description='High level guidance for the amount of context window space to use for the search. One of `low`, `medium`, or `high`. `medium` is the default.',
)
type: Literal['WebSearchPreviewTool'] = Field(
...,
description='The type of the web search tool. One of `web_search_preview` or `web_search_preview_2025_03_11`.',
)
class Status11(str, Enum):
in_progress = 'in_progress'
searching = 'searching'
completed = 'completed'
failed = 'failed'
class Type24(str, Enum):
web_search_call = 'web_search_call'
class WebSearchToolCall(BaseModel):
id: str = Field(..., description='The unique ID of the web search tool call.\n')
status: Status11 = Field(
..., description='The status of the web search tool call.\n'
)
type: Type24 = Field(
...,
description='The type of the web search tool call. Always `web_search_call`.\n',
)
class CreateModelResponseProperties(ModelResponseProperties):
pass
class GeminiInlineData(BaseModel):
data: Optional[str] = Field(
None,
description='The base64 encoding of the image, PDF, or video to include inline in the prompt. When including media inline, you must also specify the media type (mimeType) of the data. Size limit: 20MB\n',
)
mimeType: Optional[GeminiMimeType] = None
class GeminiPart(BaseModel):
inlineData: Optional[GeminiInlineData] = None
text: Optional[str] = Field(
None,
description='A text prompt or code snippet.',
examples=['Write a story about a robot learning to paint'],
)
class GeminiPromptFeedback(BaseModel):
blockReason: Optional[str] = None
blockReasonMessage: Optional[str] = None
safetyRatings: Optional[List[GeminiSafetyRating]] = None
class GeminiSafetySetting(BaseModel):
category: GeminiSafetyCategory
threshold: GeminiSafetyThreshold
class GeminiSystemInstructionContent(BaseModel):
parts: List[GeminiTextPart] = Field(
...,
description='A list of ordered parts that make up a single message. Different parts may have different IANA MIME types. For limits on the inputs, such as the maximum number of tokens or the number of images, see the model specifications on the Google models page.\n',
)
role: Role1 = Field(
...,
description='The identity of the entity that creates the message. The following values are supported: user: This indicates that the message is sent by a real person, typically a user-generated message. model: This indicates that the message is generated by the model. The model value is used to insert messages from the model into the conversation during multi-turn conversations. For non-multi-turn conversations, this field can be left blank or unset.\n',
examples=['user'],
)
class IdeogramV3EditRequest(BaseModel):
color_palette: Optional[IdeogramColorPalette] = None
image: Optional[StrictBytes] = Field(
None,
description='The image being edited (max size 10MB); only JPEG, WebP and PNG formats are supported at this time.',
)
magic_prompt: Optional[str] = Field(
None,
description='Determine if MagicPrompt should be used in generating the request or not.',
)
mask: Optional[StrictBytes] = Field(
None,
description='A black and white image of the same size as the image being edited (max size 10MB). Black regions in the mask should match up with the regions of the image that you would like to edit; only JPEG, WebP and PNG formats are supported at this time.',
)
num_images: Optional[int] = Field(
None, description='The number of images to generate.'
)
prompt: str = Field(
..., description='The prompt used to describe the edited result.'
)
rendering_speed: RenderingSpeed
seed: Optional[int] = Field(
None, description='Random seed. Set for reproducible generation.'
)
style_codes: Optional[List[StyleCode]] = Field(
None,
description='A list of 8 character hexadecimal codes representing the style of the image. Cannot be used in conjunction with style_reference_images or style_type.',
)
style_reference_images: Optional[List[StrictBytes]] = Field(
None,
description='A set of images to use as style references (maximum total size 10MB across all style references). The images should be in JPEG, PNG or WebP format.',
)
class IdeogramV3Request(BaseModel):
aspect_ratio: Optional[str] = Field(
None, description='Aspect ratio in format WxH', examples=['1x3']
)
color_palette: Optional[ColorPalette] = None
magic_prompt: Optional[MagicPrompt2] = Field(
None, description='Whether to enable magic prompt enhancement'
)
negative_prompt: Optional[str] = Field(
None, description='Text prompt specifying what to avoid in the generation'
)
num_images: Optional[int] = Field(
None, description='Number of images to generate', ge=1
)
prompt: str = Field(..., description='The text prompt for image generation')
rendering_speed: RenderingSpeed
resolution: Optional[str] = Field(
None, description='Image resolution in format WxH', examples=['1280x800']
)
seed: Optional[int] = Field(
None, description='Seed value for reproducible generation'
)
style_codes: Optional[List[StyleCode]] = Field(
None, description='Array of style codes in hexadecimal format'
)
style_reference_images: Optional[List[str]] = Field(
None, description='Array of reference image URLs or identifiers'
)
style_type: Optional[StyleType1] = Field(
None, description='The type of style to apply'
)
class ImagenGenerateImageResponse(BaseModel):
predictions: Optional[List[ImagenImagePrediction]] = None
class ImagenImageGenerationParameters(BaseModel):
addWatermark: Optional[bool] = None
aspectRatio: Optional[AspectRatio] = None
enhancePrompt: Optional[bool] = None
includeRaiReason: Optional[bool] = None
includeSafetyAttributes: Optional[bool] = None
outputOptions: Optional[ImagenOutputOptions] = None
personGeneration: Optional[PersonGeneration] = None
safetySetting: Optional[SafetySetting] = None
sampleCount: Optional[int] = Field(None, ge=1, le=4)
seed: Optional[int] = None
storageUri: Optional[AnyUrl] = None
class InputContent(
RootModel[Union[InputTextContent, InputImageContent, InputFileContent]]
):
root: Union[InputTextContent, InputImageContent, InputFileContent]
class InputMessageContentList(RootModel[List[InputContent]]):
root: List[InputContent] = Field(
...,
description='A list of one or many input items to the model, containing different content \ntypes.\n',
title='Input item content list',
)
class KlingCameraControl(BaseModel):
config: Optional[KlingCameraConfig] = None
type: Optional[KlingCameraControlType] = None
class KlingDualCharacterEffectInput(BaseModel):
duration: KlingVideoGenDuration
images: KlingDualCharacterImages
mode: Optional[KlingVideoGenMode] = 'std'
model_name: Optional[KlingCharacterEffectModelName] = 'kling-v1'
class KlingImage2VideoRequest(BaseModel):
aspect_ratio: Optional[KlingVideoGenAspectRatio] = '16:9'
callback_url: Optional[AnyUrl] = Field(
None,
description='The callback notification address. Server will notify when the task status changes.',
)
camera_control: Optional[KlingCameraControl] = None
cfg_scale: Optional[KlingVideoGenCfgScale] = Field(
default_factory=lambda: KlingVideoGenCfgScale.model_validate(0.5)
)
duration: Optional[KlingVideoGenDuration] = '5'
dynamic_masks: Optional[List[DynamicMask]] = Field(
None,
description='Dynamic Brush Configuration List (up to 6 groups). For 5-second videos, trajectory length must not exceed 77 coordinates.',
)
external_task_id: Optional[str] = Field(
None,
description='Customized Task ID. Must be unique within a single user account.',
)
image: Optional[str] = Field(
None,
description='Reference Image - URL or Base64 encoded string, cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1. Base64 should not include data:image prefix.',
)
image_tail: Optional[str] = Field(
None,
description='Reference Image - End frame control. URL or Base64 encoded string, cannot exceed 10MB, resolution not less than 300*300px. Base64 should not include data:image prefix.',
)
mode: Optional[KlingVideoGenMode] = 'std'
model_name: Optional[KlingVideoGenModelName] = 'kling-v2-master'
negative_prompt: Optional[str] = Field(
None, description='Negative text prompt', max_length=2500
)
prompt: Optional[str] = Field(
None, description='Positive text prompt', max_length=2500
)
static_mask: Optional[str] = Field(
None,
description='Static Brush Application Area (Mask image created by users using the motion brush). The aspect ratio must match the input image.',
)
class TaskResult(BaseModel):
videos: Optional[List[KlingVideoResult]] = None
class Data(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_info: Optional[TaskInfo] = None
task_result: Optional[TaskResult] = None
task_status: Optional[KlingTaskStatus] = None
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingImage2VideoResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class TaskResult1(BaseModel):
images: Optional[List[KlingImageResult]] = None
class Data1(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_result: Optional[TaskResult1] = None
task_status: Optional[KlingTaskStatus] = None
task_status_msg: Optional[str] = Field(None, description='Task status information')
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingImageGenerationsResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data1] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class KlingLipSyncInputObject(BaseModel):
audio_file: Optional[str] = Field(
None,
description='Local Path of Audio File. Supported formats: .mp3/.wav/.m4a/.aac, maximum file size of 5MB. Base64 code.',
)
audio_type: Optional[KlingAudioUploadType] = None
audio_url: Optional[str] = Field(
None,
description='Audio File Download URL. Supported formats: .mp3/.wav/.m4a/.aac, maximum file size of 5MB.',
)
mode: KlingLipSyncMode
text: Optional[str] = Field(
None,
description='Text Content for Lip-Sync Video Generation. Required when mode is text2video. Maximum length is 120 characters.',
)
video_id: Optional[str] = Field(
None,
description='The ID of the video generated by Kling AI. Only supports 5-second and 10-second videos generated within the last 30 days.',
)
video_url: Optional[str] = Field(
None,
description='Get link for uploaded video. Video files support .mp4/.mov, file size does not exceed 100MB, video length between 2-10s.',
)
voice_id: Optional[str] = Field(
None,
description='Voice ID. Required when mode is text2video. The system offers a variety of voice options to choose from.',
)
voice_language: Optional[KlingLipSyncVoiceLanguage] = 'en'
voice_speed: Optional[float] = Field(
1,
description='Speech Rate. Valid range: 0.8~2.0, accurate to one decimal place.',
ge=0.8,
le=2.0,
)
class KlingLipSyncRequest(BaseModel):
callback_url: Optional[AnyUrl] = Field(
None,
description='The callback notification address. Server will notify when the task status changes.',
)
input: KlingLipSyncInputObject
class TaskResult2(BaseModel):
videos: Optional[List[KlingVideoResult]] = None
class Data2(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_info: Optional[TaskInfo] = None
task_result: Optional[TaskResult2] = None
task_status: Optional[KlingTaskStatus] = None
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingLipSyncResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data2] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class KlingSingleImageEffectInput(BaseModel):
duration: KlingSingleImageEffectDuration
image: str = Field(
...,
description='Reference Image. URL or Base64 encoded string (without data:image prefix). File size cannot exceed 10MB, resolution not less than 300*300px, aspect ratio between 1:2.5 ~ 2.5:1.',
)
model_name: KlingSingleImageEffectModelName
class KlingText2VideoRequest(BaseModel):
aspect_ratio: Optional[KlingVideoGenAspectRatio] = '16:9'
callback_url: Optional[AnyUrl] = Field(
None, description='The callback notification address'
)
camera_control: Optional[KlingCameraControl] = None
cfg_scale: Optional[KlingVideoGenCfgScale] = Field(
default_factory=lambda: KlingVideoGenCfgScale.model_validate(0.5)
)
duration: Optional[KlingVideoGenDuration] = '5'
external_task_id: Optional[str] = Field(None, description='Customized Task ID')
mode: Optional[KlingVideoGenMode] = 'std'
model_name: Optional[KlingTextToVideoModelName] = 'kling-v1'
negative_prompt: Optional[str] = Field(
None, description='Negative text prompt', max_length=2500
)
prompt: Optional[str] = Field(
None, description='Positive text prompt', max_length=2500
)
class Data4(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_info: Optional[TaskInfo] = None
task_result: Optional[TaskResult2] = None
task_status: Optional[KlingTaskStatus] = None
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingText2VideoResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data4] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class KlingVideoEffectsInput(
RootModel[Union[KlingSingleImageEffectInput, KlingDualCharacterEffectInput]]
):
root: Union[KlingSingleImageEffectInput, KlingDualCharacterEffectInput]
class KlingVideoEffectsRequest(BaseModel):
callback_url: Optional[AnyUrl] = Field(
None,
description='The callback notification address for the result of this task.',
)
effect_scene: Union[KlingDualCharacterEffectsScene, KlingSingleImageEffectsScene]
external_task_id: Optional[str] = Field(
None,
description='Customized Task ID. Must be unique within a single user account.',
)
input: KlingVideoEffectsInput
class Data5(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_info: Optional[TaskInfo] = None
task_result: Optional[TaskResult2] = None
task_status: Optional[KlingTaskStatus] = None
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingVideoEffectsResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data5] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class KlingVideoExtendRequest(BaseModel):
callback_url: Optional[AnyUrl] = Field(
None,
description='The callback notification address. Server will notify when the task status changes.',
)
cfg_scale: Optional[KlingVideoGenCfgScale] = Field(
default_factory=lambda: KlingVideoGenCfgScale.model_validate(0.5)
)
negative_prompt: Optional[str] = Field(
None,
description='Negative text prompt for elements to avoid in the extended video',
max_length=2500,
)
prompt: Optional[str] = Field(
None,
description='Positive text prompt for guiding the video extension',
max_length=2500,
)
video_id: Optional[str] = Field(
None,
description='The ID of the video to be extended. Supports videos generated by text-to-video, image-to-video, and previous video extension operations. Cannot exceed 3 minutes total duration after extension.',
)
class Data6(BaseModel):
created_at: Optional[int] = Field(None, description='Task creation time')
task_id: Optional[str] = Field(None, description='Task ID')
task_info: Optional[TaskInfo] = None
task_result: Optional[TaskResult2] = None
task_status: Optional[KlingTaskStatus] = None
updated_at: Optional[int] = Field(None, description='Task update time')
class KlingVideoExtendResponse(BaseModel):
code: Optional[int] = Field(None, description='Error code')
data: Optional[Data6] = None
message: Optional[str] = Field(None, description='Error message')
request_id: Optional[str] = Field(None, description='Request ID')
class LumaGenerationRequest(BaseModel):
aspect_ratio: LumaAspectRatio
callback_url: Optional[AnyUrl] = Field(
None,
description='The callback URL of the generation, a POST request with Generation object will be sent to the callback URL when the generation is dreaming, completed, or failed',
)
duration: LumaVideoModelOutputDuration
generation_type: Optional[GenerationType1] = 'video'
keyframes: Optional[LumaKeyframes] = None
loop: Optional[bool] = Field(None, description='Whether to loop the video')
model: LumaVideoModel
prompt: str = Field(..., description='The prompt of the generation')
resolution: LumaVideoModelOutputResolution
class CharacterRef(BaseModel):
identity0: Optional[LumaImageIdentity] = None
class LumaImageGenerationRequest(BaseModel):
aspect_ratio: Optional[LumaAspectRatio] = '16:9'
callback_url: Optional[AnyUrl] = Field(
None, description='The callback URL for the generation'
)
character_ref: Optional[CharacterRef] = None
generation_type: Optional[GenerationType2] = 'image'
image_ref: Optional[List[LumaImageRef]] = None
model: Optional[LumaImageModel] = 'photon-1'
modify_image_ref: Optional[LumaModifyImageRef] = None
prompt: Optional[str] = Field(None, description='The prompt of the generation')
style_ref: Optional[List[LumaImageRef]] = None
class LumaUpscaleVideoGenerationRequest(BaseModel):
callback_url: Optional[AnyUrl] = Field(
None, description='The callback URL for the upscale'
)
generation_type: Optional[GenerationType3] = 'upscale_video'
resolution: Optional[LumaVideoModelOutputResolution] = None
class OutputContent(RootModel[Union[OutputTextContent, OutputAudioContent]]):
root: Union[OutputTextContent, OutputAudioContent]
class OutputMessage(BaseModel):
content: List[OutputContent] = Field(..., description='The content of the message')
role: Role4 = Field(..., description='The role of the message')
type: Type14 = Field(..., description='The type of output item')
class PikaBodyGenerate22I2vGenerate22I2vPost(BaseModel):
duration: Optional[PikaDurationEnum] = 5
image: Optional[StrictBytes] = Field(None, title='Image')
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
promptText: Optional[str] = Field(None, title='Prompttext')
resolution: Optional[PikaResolutionEnum] = '1080p'
seed: Optional[int] = Field(None, title='Seed')
class PikaBodyGenerate22KeyframeGenerate22PikaframesPost(BaseModel):
duration: Optional[int] = Field(None, ge=5, le=10, title='Duration')
keyFrames: Optional[List[StrictBytes]] = Field(
None, description='Array of keyframe images', title='Keyframes'
)
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
promptText: str = Field(..., title='Prompttext')
resolution: Optional[PikaResolutionEnum] = '1080p'
seed: Optional[int] = Field(None, title='Seed')
class PikaBodyGenerate22T2vGenerate22T2vPost(BaseModel):
aspectRatio: Optional[float] = Field(
1.7777777777777777,
description='Aspect ratio (width / height)',
ge=0.4,
le=2.5,
title='Aspectratio',
)
duration: Optional[PikaDurationEnum] = 5
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
promptText: str = Field(..., title='Prompttext')
resolution: Optional[PikaResolutionEnum] = '1080p'
seed: Optional[int] = Field(None, title='Seed')
class PikaBodyGeneratePikaffectsGeneratePikaffectsPost(BaseModel):
image: Optional[StrictBytes] = Field(None, title='Image')
negativePrompt: Optional[str] = Field(None, title='Negativeprompt')
pikaffect: Optional[Pikaffect] = None
promptText: Optional[str] = Field(None, title='Prompttext')
seed: Optional[int] = Field(None, title='Seed')
class PikaHTTPValidationError(BaseModel):
detail: Optional[List[PikaValidationError]] = Field(None, title='Detail')
class Reasoning(BaseModel):
effort: Optional[ReasoningEffort] = 'medium'
generate_summary: Optional[GenerateSummary] = Field(
None,
description="**Deprecated:** use `summary` instead.\n\nA summary of the reasoning performed by the model. This can be\nuseful for debugging and understanding the model's reasoning process.\nOne of `auto`, `concise`, or `detailed`.\n",
)
summary: Optional[Summary] = Field(
None,
description="A summary of the reasoning performed by the model. This can be\nuseful for debugging and understanding the model's reasoning process.\nOne of `auto`, `concise`, or `detailed`.\n",
)
class ResponseError(BaseModel):
code: ResponseErrorCode
message: str = Field(..., description='A human-readable description of the error.')
class Rodin3DDownloadResponse(BaseModel):
list: Optional[RodinResourceItem] = None
class Rodin3DGenerateRequest(BaseModel):
images: str = Field(..., description='The reference images to generate 3D Assets.')
material: Optional[RodinMaterialType] = None
mesh_mode: Optional[RodinMeshModeType] = None
quality: Optional[RodinQualityType] = None
seed: Optional[int] = Field(None, description='Seed.')
tier: Optional[RodinTierType] = None
class Rodin3DGenerateResponse(BaseModel):
jobs: Optional[RodinGenerateJobsData] = None
message: Optional[str] = Field(None, description='message')
prompt: Optional[str] = Field(None, description='prompt')
submit_time: Optional[str] = Field(None, description='Time')
uuid: Optional[str] = Field(None, description='Task UUID')
class RunwayImageToVideoRequest(BaseModel):
duration: RunwayDurationEnum
model: RunwayModelEnum
promptImage: RunwayPromptImageObject
promptText: Optional[str] = Field(
None, description='Text prompt for the generation', max_length=1000
)
ratio: RunwayAspectRatioEnum
seed: int = Field(
..., description='Random seed for generation', ge=0, le=4294967295
)
class TextResponseFormatConfiguration(
RootModel[
Union[
ResponseFormatText, TextResponseFormatJsonSchema, ResponseFormatJsonObject
]
]
):
root: Union[
ResponseFormatText, TextResponseFormatJsonSchema, ResponseFormatJsonObject
] = Field(
...,
description='An object specifying the format that the model must output.\n\nConfiguring `{ "type": "json_schema" }` enables Structured Outputs, \nwhich ensures the model will match your supplied JSON schema. Learn more in the \n[Structured Outputs guide](/docs/guides/structured-outputs).\n\nThe default format is `{ "type": "text" }` with no additional options.\n\n**Not recommended for gpt-4o and newer models:**\n\nSetting to `{ "type": "json_object" }` enables the older JSON mode, which\nensures the message the model generates is valid JSON. Using `json_schema`\nis preferred for models that support it.\n',
)
class Tool(
RootModel[
Union[
FileSearchTool, FunctionTool, WebSearchPreviewTool, ComputerUsePreviewTool
]
]
):
root: Union[
FileSearchTool, FunctionTool, WebSearchPreviewTool, ComputerUsePreviewTool
] = Field(..., discriminator='type')
class EasyInputMessage(BaseModel):
content: Union[str, InputMessageContentList] = Field(
...,
description='Text, image, or audio input to the model, used to generate a response.\nCan also contain previous assistant responses.\n',
)
role: Role = Field(
...,
description='The role of the message input. One of `user`, `assistant`, `system`, or\n`developer`.\n',
)
type: Optional[Type2] = Field(
None, description='The type of the message input. Always `message`.\n'
)
class GeminiContent(BaseModel):
parts: List[GeminiPart]
role: Role1 = Field(..., examples=['user'])
class GeminiGenerateContentRequest(BaseModel):
contents: List[GeminiContent]
generationConfig: Optional[GeminiGenerationConfig] = None
safetySettings: Optional[List[GeminiSafetySetting]] = None
systemInstruction: Optional[GeminiSystemInstructionContent] = None
tools: Optional[List[GeminiTool]] = None
videoMetadata: Optional[GeminiVideoMetadata] = None
class ImagenGenerateImageRequest(BaseModel):
instances: List[ImagenImageGenerationInstance]
parameters: ImagenImageGenerationParameters
class InputMessage(BaseModel):
content: Optional[InputMessageContentList] = None
role: Optional[Role3] = None
status: Optional[Status2] = None
type: Optional[Type9] = None
class Item(
RootModel[
Union[
InputMessage,
OutputMessage,
FileSearchToolCall,
ComputerToolCall,
WebSearchToolCall,
FunctionToolCall,
ReasoningItem,
]
]
):
root: Union[
InputMessage,
OutputMessage,
FileSearchToolCall,
ComputerToolCall,
WebSearchToolCall,
FunctionToolCall,
ReasoningItem,
] = Field(..., description='Content item used to generate a response.\n')
class LumaGeneration(BaseModel):
assets: Optional[LumaAssets] = None
created_at: Optional[datetime] = Field(
None, description='The date and time when the generation was created'
)
failure_reason: Optional[str] = Field(
None, description='The reason for the state of the generation'
)
generation_type: Optional[LumaGenerationType] = None
id: Optional[UUID] = Field(None, description='The ID of the generation')
model: Optional[str] = Field(None, description='The model used for the generation')
request: Optional[
Union[
LumaGenerationRequest,
LumaImageGenerationRequest,
LumaUpscaleVideoGenerationRequest,
LumaAudioGenerationRequest,
]
] = Field(None, description='The request of the generation')
state: Optional[LumaState] = None
class OutputItem(
RootModel[
Union[
OutputMessage,
FileSearchToolCall,
FunctionToolCall,
WebSearchToolCall,
ComputerToolCall,
ReasoningItem,
]
]
):
root: Union[
OutputMessage,
FileSearchToolCall,
FunctionToolCall,
WebSearchToolCall,
ComputerToolCall,
ReasoningItem,
]
class Text(BaseModel):
format: Optional[TextResponseFormatConfiguration] = None
class ResponseProperties(BaseModel):
instructions: Optional[str] = Field(
None,
description="Inserts a system (or developer) message as the first item in the model's context.\n\nWhen using along with `previous_response_id`, the instructions from a previous\nresponse will not be carried over to the next response. This makes it simple\nto swap out system (or developer) messages in new responses.\n",
)
max_output_tokens: Optional[int] = Field(
None,
description='An upper bound for the number of tokens that can be generated for a response, including visible output tokens and [reasoning tokens](/docs/guides/reasoning).\n',
)
model: Optional[OpenAIModels] = None
previous_response_id: Optional[str] = Field(
None,
description='The unique ID of the previous response to the model. Use this to\ncreate multi-turn conversations. Learn more about \n[conversation state](/docs/guides/conversation-state).\n',
)
reasoning: Optional[Reasoning] = None
text: Optional[Text] = None
tool_choice: Optional[
Union[ToolChoiceOptions, ToolChoiceTypes, ToolChoiceFunction]
] = Field(
None,
description='How the model should select which tool (or tools) to use when generating\na response. See the `tools` parameter to see how to specify which tools\nthe model can call.\n',
)
tools: Optional[List[Tool]] = None
truncation: Optional[Truncation1] = Field(
'disabled',
description="The truncation strategy to use for the model response.\n- `auto`: If the context of this response and previous ones exceeds\n the model's context window size, the model will truncate the \n response to fit the context window by dropping input items in the\n middle of the conversation. \n- `disabled` (default): If a model response will exceed the context window \n size for a model, the request will fail with a 400 error.\n",
)
class GeminiCandidate(BaseModel):
citationMetadata: Optional[GeminiCitationMetadata] = None
content: Optional[GeminiContent] = None
finishReason: Optional[str] = None
safetyRatings: Optional[List[GeminiSafetyRating]] = None
class GeminiGenerateContentResponse(BaseModel):
candidates: Optional[List[GeminiCandidate]] = None
promptFeedback: Optional[GeminiPromptFeedback] = None
class InputItem(RootModel[Union[EasyInputMessage, Item]]):
root: Union[EasyInputMessage, Item]
class OpenAICreateResponse(CreateModelResponseProperties, ResponseProperties):
include: Optional[List[Includable]] = Field(
None,
description='Specify additional output data to include in the model response. Currently\nsupported values are:\n- `file_search_call.results`: Include the search results of\n the file search tool call.\n- `message.input_image.image_url`: Include image urls from the input message.\n- `computer_call_output.output.image_url`: Include image urls from the computer call output.\n',
)
input: Union[str, List[InputItem]] = Field(
...,
description='Text, image, or file inputs to the model, used to generate a response.\n\nLearn more:\n- [Text inputs and outputs](/docs/guides/text)\n- [Image inputs](/docs/guides/images)\n- [File inputs](/docs/guides/pdf-files)\n- [Conversation state](/docs/guides/conversation-state)\n- [Function calling](/docs/guides/function-calling)\n',
)
parallel_tool_calls: Optional[bool] = Field(
True, description='Whether to allow the model to run tool calls in parallel.\n'
)
store: Optional[bool] = Field(
True,
description='Whether to store the generated model response for later retrieval via\nAPI.\n',
)
stream: Optional[bool] = Field(
False,
description='If set to true, the model response data will be streamed to the client\nas it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format).\nSee the [Streaming section below](/docs/api-reference/responses-streaming)\nfor more information.\n',
)
usage: Optional[ResponseUsage] = None
class OpenAIResponse(ModelResponseProperties, ResponseProperties):
created_at: Optional[float] = Field(
None,
description='Unix timestamp (in seconds) of when this Response was created.',
)
error: Optional[ResponseError] = None
id: Optional[str] = Field(None, description='Unique identifier for this Response.')
incomplete_details: Optional[IncompleteDetails] = Field(
None, description='Details about why the response is incomplete.\n'
)
object: Optional[Object] = Field(
None, description='The object type of this resource - always set to `response`.'
)
output: Optional[List[OutputItem]] = Field(
None,
description="An array of content items generated by the model.\n\n- The length and order of items in the `output` array is dependent\n on the model's response.\n- Rather than accessing the first item in the `output` array and \n assuming it's an `assistant` message with the content generated by\n the model, you might consider using the `output_text` property where\n supported in SDKs.\n",
)
output_text: Optional[str] = Field(
None,
description='SDK-only convenience property that contains the aggregated text output \nfrom all `output_text` items in the `output` array, if any are present. \nSupported in the Python and JavaScript SDKs.\n',
)
parallel_tool_calls: Optional[bool] = Field(
True, description='Whether to allow the model to run tool calls in parallel.\n'
)
status: Optional[Status6] = Field(
None,
description='The status of the response generation. One of `completed`, `failed`, `in_progress`, or `incomplete`.',
)
usage: Optional[ResponseUsage] = None
|