Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import numpy as np | |
| import cv2 | |
| import os | |
| from PIL import Image | |
| import warnings | |
| import sys # Added for PyInstaller | |
| warnings.filterwarnings('ignore') | |
| # --- PyInstaller Helper --- | |
| # Determines the correct path for bundled data files (models) | |
| def resource_path(relative_path): | |
| """ Get absolute path to resource, works for dev and for PyInstaller """ | |
| try: | |
| # PyInstaller creates a temp folder and stores path in _MEIPASS | |
| base_path = sys._MEIPASS | |
| except Exception: | |
| base_path = os.path.abspath(".") | |
| return os.path.join(base_path, relative_path) | |
| # --- Model and Helper Class Definitions --- | |
| # Most of these classes are copied directly from the project's files | |
| # (extractor.py, update.py, seg.py, model.py, inference.py) | |
| # to make this Gradio app a self-contained script. | |
| # from extractor.py | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, in_planes, planes, norm_fn='group', stride=1): | |
| super(ResidualBlock, self).__init__() | |
| self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) | |
| self.relu = nn.ReLU(inplace=True) | |
| if norm_fn == 'batch': | |
| self.norm1 = nn.BatchNorm2d(planes) | |
| self.norm2 = nn.BatchNorm2d(planes) | |
| if not stride == 1: | |
| self.norm3 = nn.BatchNorm2d(planes) | |
| elif norm_fn == 'instance': | |
| self.norm1 = nn.InstanceNorm2d(planes) | |
| self.norm2 = nn.InstanceNorm2d(planes) | |
| if not stride == 1: | |
| self.norm3 = nn.InstanceNorm2d(planes) | |
| if stride == 1: | |
| self.downsample = None | |
| else: | |
| self.downsample = nn.Sequential( | |
| nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) | |
| def forward(self, x): | |
| y = x | |
| y = self.relu(self.norm1(self.conv1(y))) | |
| y = self.relu(self.norm2(self.conv2(y))) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| return self.relu(x + y) | |
| class BasicEncoder(nn.Module): | |
| def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0): | |
| super(BasicEncoder, self).__init__() | |
| self.norm_fn = norm_fn | |
| if self.norm_fn == 'batch': | |
| self.norm1 = nn.BatchNorm2d(64) | |
| elif self.norm_fn == 'instance': | |
| self.norm1 = nn.InstanceNorm2d(64) | |
| self.conv1 = nn.Conv2d(3, 80, kernel_size=7, stride=2, padding=3) | |
| self.relu1 = nn.ReLU(inplace=True) | |
| self.in_planes = 80 | |
| self.layer1 = self._make_layer(80, stride=1) | |
| self.layer2 = self._make_layer(160, stride=2) | |
| self.layer3 = self._make_layer(240, stride=2) | |
| self.conv2 = nn.Conv2d(240, output_dim, kernel_size=1) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): | |
| if m.weight is not None: | |
| nn.init.constant_(m.weight, 1) | |
| if m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| def _make_layer(self, dim, stride=1): | |
| layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) | |
| layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) | |
| layers = (layer1, layer2) | |
| self.in_planes = dim | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.relu1(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.conv2(x) | |
| return x | |
| # from update.py | |
| class FlowHead(nn.Module): | |
| def __init__(self, input_dim=128, hidden_dim=256): | |
| super(FlowHead, self).__init__() | |
| self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) | |
| self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) | |
| self.relu = nn.ReLU(inplace=True) | |
| def forward(self, x): | |
| return self.conv2(self.relu(self.conv1(x))) | |
| class SepConvGRU(nn.Module): | |
| def __init__(self, hidden_dim=128, input_dim=192+128): | |
| super(SepConvGRU, self).__init__() | |
| self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | |
| self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | |
| self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2)) | |
| self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | |
| self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | |
| self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0)) | |
| def forward(self, h, x): | |
| hx = torch.cat([h, x], dim=1) | |
| z = torch.sigmoid(self.convz1(hx)) | |
| r = torch.sigmoid(self.convr1(hx)) | |
| q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1))) | |
| h = (1-z) * h + z * q | |
| hx = torch.cat([h, x], dim=1) | |
| z = torch.sigmoid(self.convz2(hx)) | |
| r = torch.sigmoid(self.convr2(hx)) | |
| q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1))) | |
| h = (1-z) * h + z * q | |
| return h | |
| class BasicMotionEncoder(nn.Module): | |
| def __init__(self): | |
| super(BasicMotionEncoder, self).__init__() | |
| self.convc1 = nn.Conv2d(320, 240, 1, padding=0) | |
| self.convc2 = nn.Conv2d(240, 160, 3, padding=1) | |
| self.convf1 = nn.Conv2d(2, 160, 7, padding=3) | |
| self.convf2 = nn.Conv2d(160, 80, 3, padding=1) | |
| self.conv = nn.Conv2d(160+80, 160-2, 3, padding=1) | |
| def forward(self, flow, corr): | |
| cor = F.relu(self.convc1(corr)) | |
| cor = F.relu(self.convc2(cor)) | |
| flo = F.relu(self.convf1(flow)) | |
| flo = F.relu(self.convf2(flo)) | |
| cor_flo = torch.cat([cor, flo], dim=1) | |
| out = F.relu(self.conv(cor_flo)) | |
| return torch.cat([out, flow], dim=1) | |
| class BasicUpdateBlock(nn.Module): | |
| def __init__(self, hidden_dim=128): | |
| super(BasicUpdateBlock, self).__init__() | |
| self.encoder = BasicMotionEncoder() | |
| self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=160+160) | |
| self.flow_head = FlowHead(hidden_dim, hidden_dim=320) | |
| self.mask = nn.Sequential( | |
| nn.Conv2d(hidden_dim, 288, 3, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(288, 64*9, 1, padding=0)) | |
| def forward(self, net, inp, corr, flow): | |
| motion_features = self.encoder(flow, corr) | |
| inp = torch.cat([inp, motion_features], dim=1) | |
| net = self.gru(net, inp) | |
| delta_flow = self.flow_head(net) | |
| mask = .25 * self.mask(net) | |
| return net, mask, delta_flow | |
| # from seg.py | |
| class REBNCONV(nn.Module): | |
| def __init__(self, in_ch=3, out_ch=3, dirate=1): | |
| super(REBNCONV, self).__init__() | |
| self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate) | |
| self.bn_s1 = nn.BatchNorm2d(out_ch) | |
| self.relu_s1 = nn.ReLU(inplace=True) | |
| def forward(self, x): | |
| return self.relu_s1(self.bn_s1(self.conv_s1(x))) | |
| def _upsample_like(src, tar): | |
| return F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=False) | |
| class RSU7(nn.Module): | |
| def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
| super(RSU7, self).__init__() | |
| self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
| self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
| self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
| self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
| def forward(self, x): | |
| hxin = self.rebnconvin(x) | |
| hx1 = self.rebnconv1(hxin) | |
| hx = self.pool1(hx1) | |
| hx2 = self.rebnconv2(hx) | |
| hx = self.pool2(hx2) | |
| hx3 = self.rebnconv3(hx) | |
| hx = self.pool3(hx3) | |
| hx4 = self.rebnconv4(hx) | |
| hx = self.pool4(hx4) | |
| hx5 = self.rebnconv5(hx) | |
| hx = self.pool5(hx5) | |
| hx6 = self.rebnconv6(hx) | |
| hx7 = self.rebnconv7(hx6) | |
| hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1)) | |
| hx6dup = _upsample_like(hx6d, hx5) | |
| hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1)) | |
| hx5dup = _upsample_like(hx5d, hx4) | |
| hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
| hx4dup = _upsample_like(hx4d, hx3) | |
| hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
| hx3dup = _upsample_like(hx3d, hx2) | |
| hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
| hx2dup = _upsample_like(hx2d, hx1) | |
| hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
| return hx1d + hxin | |
| class RSU6(nn.Module): | |
| def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
| super(RSU6, self).__init__() | |
| self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
| self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
| self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
| self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
| def forward(self, x): | |
| hxin = self.rebnconvin(x) | |
| hx1 = self.rebnconv1(hxin) | |
| hx = self.pool1(hx1) | |
| hx2 = self.rebnconv2(hx) | |
| hx = self.pool2(hx2) | |
| hx3 = self.rebnconv3(hx) | |
| hx = self.pool3(hx3) | |
| hx4 = self.rebnconv4(hx) | |
| hx = self.pool4(hx4) | |
| hx5 = self.rebnconv5(hx) | |
| hx6 = self.rebnconv6(hx5) | |
| hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1)) | |
| hx5dup = _upsample_like(hx5d, hx4) | |
| hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1)) | |
| hx4dup = _upsample_like(hx4d, hx3) | |
| hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
| hx3dup = _upsample_like(hx3d, hx2) | |
| hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
| hx2dup = _upsample_like(hx2d, hx1) | |
| hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
| return hx1d + hxin | |
| class RSU5(nn.Module): | |
| def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
| super(RSU5, self).__init__() | |
| self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
| self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
| self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
| self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
| def forward(self, x): | |
| hxin = self.rebnconvin(x) | |
| hx1 = self.rebnconv1(hxin) | |
| hx = self.pool1(hx1) | |
| hx2 = self.rebnconv2(hx) | |
| hx = self.pool2(hx2) | |
| hx3 = self.rebnconv3(hx) | |
| hx = self.pool3(hx3) | |
| hx4 = self.rebnconv4(hx) | |
| hx5 = self.rebnconv5(hx4) | |
| hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1)) | |
| hx4dup = _upsample_like(hx4d, hx3) | |
| hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1)) | |
| hx3dup = _upsample_like(hx3d, hx2) | |
| hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
| hx2dup = _upsample_like(hx2d, hx1) | |
| hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
| return hx1d + hxin | |
| class RSU4(nn.Module): | |
| def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
| super(RSU4, self).__init__() | |
| self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
| self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
| self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1) | |
| self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
| self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1) | |
| self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
| def forward(self, x): | |
| hxin = self.rebnconvin(x) | |
| hx1 = self.rebnconv1(hxin) | |
| hx = self.pool1(hx1) | |
| hx2 = self.rebnconv2(hx) | |
| hx = self.pool2(hx2) | |
| hx3 = self.rebnconv3(hx) | |
| hx4 = self.rebnconv4(hx3) | |
| hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
| hx3dup = _upsample_like(hx3d, hx2) | |
| hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1)) | |
| hx2dup = _upsample_like(hx2d, hx1) | |
| hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1)) | |
| return hx1d + hxin | |
| class RSU4F(nn.Module): | |
| def __init__(self, in_ch=3, mid_ch=12, out_ch=3): | |
| super(RSU4F, self).__init__() | |
| self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1) | |
| self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1) | |
| self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2) | |
| self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4) | |
| self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8) | |
| self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4) | |
| self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2) | |
| self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1) | |
| def forward(self, x): | |
| hxin = self.rebnconvin(x) | |
| hx1 = self.rebnconv1(hxin) | |
| hx2 = self.rebnconv2(hx1) | |
| hx3 = self.rebnconv3(hx2) | |
| hx4 = self.rebnconv4(hx3) | |
| hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1)) | |
| hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1)) | |
| hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1)) | |
| return hx1d + hxin | |
| class U2NETP(nn.Module): | |
| def __init__(self, in_ch=3, out_ch=1): | |
| super(U2NETP, self).__init__() | |
| self.stage1 = RSU7(in_ch, 16, 64) | |
| self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.stage2 = RSU6(64, 16, 64) | |
| self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.stage3 = RSU5(64, 16, 64) | |
| self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.stage4 = RSU4(64, 16, 64) | |
| self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.stage5 = RSU4F(64, 16, 64) | |
| self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True) | |
| self.stage6 = RSU4F(64, 16, 64) | |
| self.stage5d = RSU4F(128, 16, 64) | |
| self.stage4d = RSU4(128, 16, 64) | |
| self.stage3d = RSU5(128, 16, 64) | |
| self.stage2d = RSU6(128, 16, 64) | |
| self.stage1d = RSU7(128, 16, 64) | |
| self.side1 = nn.Conv2d(64, out_ch, 3, padding=1) | |
| self.side2 = nn.Conv2d(64, out_ch, 3, padding=1) | |
| self.side3 = nn.Conv2d(64, out_ch, 3, padding=1) | |
| self.side4 = nn.Conv2d(64, out_ch, 3, padding=1) | |
| self.side5 = nn.Conv2d(64, out_ch, 3, padding=1) | |
| self.side6 = nn.Conv2d(64, out_ch, 3, padding=1) | |
| self.outconv = nn.Conv2d(6, out_ch, 1) | |
| def forward(self, x): | |
| hx = x | |
| hx1 = self.stage1(hx) | |
| hx = self.pool12(hx1) | |
| hx2 = self.stage2(hx) | |
| hx = self.pool23(hx2) | |
| hx3 = self.stage3(hx) | |
| hx = self.pool34(hx3) | |
| hx4 = self.stage4(hx) | |
| hx = self.pool45(hx4) | |
| hx5 = self.stage5(hx) | |
| hx = self.pool56(hx5) | |
| hx6 = self.stage6(hx) | |
| hx6up = _upsample_like(hx6, hx5) | |
| hx5d = self.stage5d(torch.cat((hx6up, hx5), 1)) | |
| hx5dup = _upsample_like(hx5d, hx4) | |
| hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1)) | |
| hx4dup = _upsample_like(hx4d, hx3) | |
| hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1)) | |
| hx3dup = _upsample_like(hx3d, hx2) | |
| hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1)) | |
| hx2dup = _upsample_like(hx2d, hx1) | |
| hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1)) | |
| d1 = self.side1(hx1d) | |
| d2 = self.side2(hx2d) | |
| d2 = _upsample_like(d2, d1) | |
| d3 = self.side3(hx3d) | |
| d3 = _upsample_like(d3, d1) | |
| d4 = self.side4(hx4d) | |
| d4 = _upsample_like(d4, d1) | |
| d5 = self.side5(hx5d) | |
| d5 = _upsample_like(d5, d1) | |
| d6 = self.side6(hx6) | |
| d6 = _upsample_like(d6, d1) | |
| d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1)) | |
| return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6) | |
| # from model.py | |
| def bilinear_sampler(img, coords, mode='bilinear', mask=False): | |
| H, W = img.shape[-2:] | |
| xgrid, ygrid = coords.split([1, 1], dim=-1) | |
| xgrid = 2 * xgrid / (W - 1) - 1 | |
| ygrid = 2 * ygrid / (H - 1) - 1 | |
| grid = torch.cat([xgrid, ygrid], dim=-1) | |
| img = F.grid_sample(img, grid, align_corners=True) | |
| if mask: | |
| mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) | |
| return img, mask.float() | |
| return img | |
| def coords_grid(batch, ht, wd): | |
| coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) | |
| coords = torch.stack(coords[::-1], dim=0).float() | |
| return coords[None].repeat(batch, 1, 1, 1) | |
| class DocScanner(nn.Module): | |
| def __init__(self): | |
| super(DocScanner, self).__init__() | |
| self.hidden_dim = hdim = 160 | |
| self.context_dim = 160 | |
| self.fnet = BasicEncoder(output_dim=320, norm_fn='instance') | |
| self.update_block = BasicUpdateBlock(hidden_dim=hdim) | |
| def forward(self, image1, iters=12, flow_init=None, test_mode=False): | |
| image1 = image1.contiguous() | |
| fmap1 = self.fnet(image1) | |
| warpfea = fmap1 | |
| net, inp = torch.split(fmap1, [160, 160], dim=1) | |
| net = torch.tanh(net) | |
| inp = torch.relu(inp) | |
| coodslar, coords0, coords1 = self.initialize_flow(image1) | |
| if flow_init is not None: | |
| coords1 = coords1 + flow_init | |
| flow_predictions = [] | |
| for itr in range(iters): | |
| coords1 = coords1.detach() | |
| flow = coords1 - coords0 | |
| net, up_mask, delta_flow = self.update_block(net, inp, warpfea, flow) | |
| coords1 = coords1 + delta_flow | |
| flow_up = self.upsample_flow(coords1 - coords0, up_mask) | |
| bm_up = coodslar + flow_up | |
| warpfea = bilinear_sampler(fmap1, coords1.permute(0, 2, 3, 1)) | |
| flow_predictions.append(bm_up) | |
| if test_mode: | |
| return bm_up | |
| return flow_predictions | |
| def initialize_flow(self, img): | |
| N, C, H, W = img.shape | |
| coodslar = coords_grid(N, H, W).to(img.device) | |
| coords0 = coords_grid(N, H // 8, W // 8).to(img.device) | |
| coords1 = coords_grid(N, H // 8, W // 8).to(img.device) | |
| return coodslar, coords0, coords1 | |
| def upsample_flow(self, flow, mask): | |
| N, _, H, W = flow.shape | |
| mask = mask.view(N, 1, 9, 8, 8, H, W) | |
| mask = torch.softmax(mask, dim=2) | |
| up_flow = F.unfold(8 * flow, [3, 3], padding=1) | |
| up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) | |
| up_flow = torch.sum(mask * up_flow, dim=2) | |
| up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) | |
| return up_flow.reshape(N, 2, 8 * H, 8 * W) | |
| # from inference.py | |
| class Net(nn.Module): | |
| def __init__(self): | |
| super(Net, self).__init__() | |
| self.msk = U2NETP(3, 1) | |
| self.bm = DocScanner() | |
| def forward(self, x): | |
| msk, _, _, _, _, _, _ = self.msk(x) | |
| msk = (msk > 0.5).float() | |
| x = msk * x | |
| bm = self.bm(x, iters=12, test_mode=True) | |
| bm = (2 * (bm / 286.8) - 1) * 0.99 | |
| return bm | |
| def reload_seg_model(model, path=""): | |
| if not bool(path) or not os.path.exists(path): | |
| print("Warning: Segmentation model path not found. Using initial weights.") | |
| return model | |
| model_dict = model.state_dict() | |
| pretrained_dict = torch.load(path, map_location='cuda:0' if torch.cuda.is_available() else 'cpu') | |
| pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict} | |
| model_dict.update(pretrained_dict) | |
| model.load_state_dict(model_dict) | |
| return model | |
| def reload_rec_model(model, path=""): | |
| if not bool(path) or not os.path.exists(path): | |
| print("Warning: Rectification model path not found. Using initial weights.") | |
| return model | |
| model_dict = model.state_dict() | |
| pretrained_dict = torch.load(path, map_location='cuda:0' if torch.cuda.is_available() else 'cpu') | |
| pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} | |
| model_dict.update(pretrained_dict) | |
| model.load_state_dict(model_dict) | |
| return model | |
| # --- Gradio App Logic --- | |
| # Configuration | |
| SEG_MODEL_PATH = resource_path('model_pretrained/seg.pth') | |
| REC_MODEL_PATH = resource_path('model_pretrained/DocScanner-L.pth') | |
| DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
| # Load models once | |
| print("Initializing and loading models...") | |
| net = Net().to(DEVICE) | |
| reload_seg_model(net.msk, SEG_MODEL_PATH) | |
| reload_rec_model(net.bm, REC_MODEL_PATH) | |
| net.eval() | |
| print("Models loaded successfully.") | |
| def rectify_image(distorted_image): | |
| """ | |
| Takes a distorted image as a numpy array, rectifies it using the DocScanner model, | |
| and returns the rectified image as a numpy array. | |
| """ | |
| if distorted_image is None: | |
| return None | |
| im_ori = distorted_image.astype(np.float32) / 255. | |
| h, w, _ = im_ori.shape | |
| # Pre-process | |
| im = cv2.resize(im_ori, (288, 288)) | |
| im = im.transpose(2, 0, 1) | |
| im = torch.from_numpy(im).float().unsqueeze(0) | |
| with torch.no_grad(): | |
| # Inference | |
| bm = net(im.to(DEVICE)) | |
| bm = bm.cpu() | |
| # Post-process | |
| bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow | |
| bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow | |
| bm0 = cv2.blur(bm0, (3, 3)) | |
| bm1 = cv2.blur(bm1, (3, 3)) | |
| lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2 | |
| # Warp the original image | |
| out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True) | |
| # Convert to displayable format | |
| rectified_image = (out[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8) | |
| return rectified_image | |
| # --- Gradio Interface --- | |
| DESCRIPTION = """ | |
| This Space demonstrates DocScanner, a deep learning model that automatically corrects geometric distortions in document images. | |
| If you have a photo of a document that is warped, skewed, or has curled edges, this tool can transform it into a flat, | |
| top-down, scanner-like image. | |
| This application is an implementation of the research paper: DocScanner: Robust Document Image Rectification with Progressive Learning | |
| (https://arxiv.org/abs/2110.14968). | |
| # How to Use | |
| 1. Upload an Image: Drag and drop a distorted document image into the input box, or click to browse your files. | |
| 2. Submit: Click the "Submit" button to begin the rectification process. | |
| 3. View the Result: The corrected, flattened document will appear in the output box on the right. | |
| # Technical Details | |
| * Model: This demo uses the DocScanner-L model, as described in the paper. | |
| * Technology: The application is built with Python, PyTorch, and the Gradio library. | |
| """ | |
| if __name__ == "__main__": | |
| iface = gr.Interface( | |
| fn=rectify_image, | |
| inputs=gr.Image(type="numpy", label="Upload Distorted Document"), | |
| outputs=gr.Image(type="numpy", label="Rectified Document"), | |
| title="DocScanner: Document Image Rectification", | |
| description=DESCRIPTION, | |
| examples=[ | |
| ['distorted/27_2 copy.png'], | |
| ['distorted/42_2 copy.png'], | |
| ['distorted/48_1 copy.png'] | |
| ] | |
| ) | |
| iface.launch() | |