Spaces:
Sleeping
Sleeping
File size: 10,108 Bytes
1ec7405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
"""
Visualize training metrics from MLflow runs.
Generates plots showing:
- Loss curves (training/validation)
- Task-specific metrics over time
- Learning rate schedule
- Training speed analysis
Author: Oliver Perrin
Date: December 2025
"""
from __future__ import annotations
import json
import sys
from pathlib import Path
import matplotlib.pyplot as plt
import mlflow
import mlflow.tracking
import seaborn as sns
PROJECT_ROOT = Path(__file__).resolve().parents[1]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from src.utils.logging import configure_logging, get_logger
configure_logging()
logger = get_logger(__name__)
# Configure plotting style
sns.set_style("whitegrid")
plt.rcParams["figure.figsize"] = (12, 8)
plt.rcParams["figure.dpi"] = 100
OUTPUTS_DIR = PROJECT_ROOT / "outputs"
MLRUNS_DIR = PROJECT_ROOT / "mlruns"
def load_training_history() -> dict[str, object] | None:
"""Load training history from JSON if available."""
history_path = OUTPUTS_DIR / "training_history.json"
if history_path.exists():
with open(history_path) as f:
data: dict[str, object] = json.load(f)
return data
return None
def get_latest_run():
"""Get the most recent MLflow run."""
mlflow.set_tracking_uri(f"file://{MLRUNS_DIR}")
client = mlflow.tracking.MlflowClient()
# Get the experiment (LexiMind)
experiment = client.get_experiment_by_name("LexiMind")
if not experiment:
logger.error("No 'LexiMind' experiment found")
return None
# Get all runs, sorted by start time
runs = client.search_runs(
experiment_ids=[experiment.experiment_id],
order_by=["start_time DESC"],
max_results=1,
)
if not runs:
logger.error("No runs found in experiment")
return None
return runs[0]
def plot_loss_curves(run):
"""Plot training and validation loss over time."""
client = mlflow.tracking.MlflowClient()
# Get metrics
train_loss = client.get_metric_history(run.info.run_id, "train_total_loss")
val_loss = client.get_metric_history(run.info.run_id, "val_total_loss")
fig, ax = plt.subplots(figsize=(12, 6))
if not train_loss:
# Create placeholder plot
ax.text(
0.5,
0.5,
"No training data yet\n\nWaiting for first epoch to complete...",
ha="center",
va="center",
fontsize=14,
color="gray",
)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
else:
# Extract steps and values
train_steps = [m.step for m in train_loss]
train_values = [m.value for m in train_loss]
ax.plot(train_steps, train_values, label="Training Loss", linewidth=2, alpha=0.8)
if val_loss:
val_steps = [m.step for m in val_loss]
val_values = [m.value for m in val_loss]
ax.plot(val_steps, val_values, label="Validation Loss", linewidth=2, alpha=0.8)
ax.legend(fontsize=11)
ax.set_xlabel("Epoch", fontsize=12)
ax.set_ylabel("Loss", fontsize=12)
ax.set_title("Training Progress: Total Loss", fontsize=14, fontweight="bold")
ax.grid(True, alpha=0.3)
plt.tight_layout()
output_path = OUTPUTS_DIR / "training_loss_curve.png"
plt.savefig(output_path, dpi=150, bbox_inches="tight")
logger.info(f"✓ Saved loss curve to {output_path}")
plt.close()
def plot_task_metrics(run):
"""Plot metrics for each task."""
client = mlflow.tracking.MlflowClient()
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
fig.suptitle("Task-Specific Training Metrics", fontsize=16, fontweight="bold")
# Summarization
ax = axes[0, 0]
train_sum = client.get_metric_history(run.info.run_id, "train_summarization_loss")
val_sum = client.get_metric_history(run.info.run_id, "val_summarization_loss")
if train_sum:
ax.plot(
[m.step for m in train_sum], [m.value for m in train_sum], label="Train", linewidth=2
)
if val_sum:
ax.plot([m.step for m in val_sum], [m.value for m in val_sum], label="Val", linewidth=2)
ax.set_title("Summarization Loss", fontweight="bold")
ax.set_xlabel("Epoch")
ax.set_ylabel("Loss")
ax.legend()
ax.grid(True, alpha=0.3)
# Emotion
ax = axes[0, 1]
train_emo = client.get_metric_history(run.info.run_id, "train_emotion_loss")
val_emo = client.get_metric_history(run.info.run_id, "val_emotion_loss")
train_f1 = client.get_metric_history(run.info.run_id, "train_emotion_f1")
val_f1 = client.get_metric_history(run.info.run_id, "val_emotion_f1")
if train_emo:
ax.plot(
[m.step for m in train_emo],
[m.value for m in train_emo],
label="Train Loss",
linewidth=2,
)
if val_emo:
ax.plot(
[m.step for m in val_emo], [m.value for m in val_emo], label="Val Loss", linewidth=2
)
ax2 = ax.twinx()
if train_f1:
ax2.plot(
[m.step for m in train_f1],
[m.value for m in train_f1],
label="Train F1",
linewidth=2,
linestyle="--",
alpha=0.7,
)
if val_f1:
ax2.plot(
[m.step for m in val_f1],
[m.value for m in val_f1],
label="Val F1",
linewidth=2,
linestyle="--",
alpha=0.7,
)
ax.set_title("Emotion Detection", fontweight="bold")
ax.set_xlabel("Epoch")
ax.set_ylabel("Loss")
ax2.set_ylabel("F1 Score")
ax.legend(loc="upper left")
ax2.legend(loc="upper right")
ax.grid(True, alpha=0.3)
# Topic
ax = axes[1, 0]
train_topic = client.get_metric_history(run.info.run_id, "train_topic_loss")
val_topic = client.get_metric_history(run.info.run_id, "val_topic_loss")
train_acc = client.get_metric_history(run.info.run_id, "train_topic_accuracy")
val_acc = client.get_metric_history(run.info.run_id, "val_topic_accuracy")
if train_topic:
ax.plot(
[m.step for m in train_topic],
[m.value for m in train_topic],
label="Train Loss",
linewidth=2,
)
if val_topic:
ax.plot(
[m.step for m in val_topic], [m.value for m in val_topic], label="Val Loss", linewidth=2
)
ax2 = ax.twinx()
if train_acc:
ax2.plot(
[m.step for m in train_acc],
[m.value for m in train_acc],
label="Train Acc",
linewidth=2,
linestyle="--",
alpha=0.7,
)
if val_acc:
ax2.plot(
[m.step for m in val_acc],
[m.value for m in val_acc],
label="Val Acc",
linewidth=2,
linestyle="--",
alpha=0.7,
)
ax.set_title("Topic Classification", fontweight="bold")
ax.set_xlabel("Epoch")
ax.set_ylabel("Loss")
ax2.set_ylabel("Accuracy")
ax.legend(loc="upper left")
ax2.legend(loc="upper right")
ax.grid(True, alpha=0.3)
# Summary statistics
ax = axes[1, 1]
ax.axis("off")
# Get final metrics
summary_text = "Final Metrics (Last Epoch)\n" + "=" * 35 + "\n\n"
if val_topic and val_acc:
summary_text += f"Topic Accuracy: {val_acc[-1].value:.1%}\n"
if val_emo and val_f1:
summary_text += f"Emotion F1: {val_f1[-1].value:.1%}\n"
if val_sum:
summary_text += f"Summarization Loss: {val_sum[-1].value:.3f}\n"
ax.text(0.1, 0.5, summary_text, fontsize=12, family="monospace", verticalalignment="center")
plt.tight_layout()
output_path = OUTPUTS_DIR / "task_metrics.png"
plt.savefig(output_path, dpi=150, bbox_inches="tight")
logger.info(f"✓ Saved task metrics to {output_path}")
plt.close()
def plot_learning_rate(run):
"""Plot learning rate schedule if available."""
client = mlflow.tracking.MlflowClient()
lr_metrics = client.get_metric_history(run.info.run_id, "learning_rate")
fig, ax = plt.subplots(figsize=(12, 5))
if not lr_metrics:
# Create placeholder
ax.text(
0.5,
0.5,
"No learning rate data yet\n\n(Will be logged in future training runs)",
ha="center",
va="center",
fontsize=14,
color="gray",
)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
else:
steps = [m.step for m in lr_metrics]
values = [m.value for m in lr_metrics]
ax.plot(steps, values, linewidth=2, color="darkblue")
# Mark warmup region
warmup_steps = 1000 # From config
if warmup_steps < max(steps):
ax.axvline(warmup_steps, color="red", linestyle="--", alpha=0.5, label="Warmup End")
ax.legend()
ax.set_xlabel("Step", fontsize=12)
ax.set_ylabel("Learning Rate", fontsize=12)
ax.set_title("Learning Rate Schedule (Cosine with Warmup)", fontsize=14, fontweight="bold")
ax.grid(True, alpha=0.3)
plt.tight_layout()
output_path = OUTPUTS_DIR / "learning_rate_schedule.png"
plt.savefig(output_path, dpi=150, bbox_inches="tight")
logger.info(f"✓ Saved LR schedule to {output_path}")
plt.close()
def main():
"""Generate all training visualizations."""
logger.info("Loading MLflow data...")
run = get_latest_run()
if not run:
logger.error("No training run found. Make sure training has started.")
return
logger.info(f"Analyzing run: {run.info.run_id}")
OUTPUTS_DIR.mkdir(parents=True, exist_ok=True)
logger.info("Generating visualizations...")
plot_loss_curves(run)
plot_task_metrics(run)
plot_learning_rate(run)
logger.info("\n" + "=" * 60)
logger.info("✓ All visualizations saved to outputs/")
logger.info("=" * 60)
logger.info(" - training_loss_curve.png")
logger.info(" - task_metrics.png")
logger.info(" - learning_rate_schedule.png")
logger.info("=" * 60)
if __name__ == "__main__":
main()
|