Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from model import load_model
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
from thop import profile
|
| 10 |
+
import io
|
| 11 |
+
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
models_cache = {}
|
| 15 |
+
|
| 16 |
+
transform = transforms.Compose([
|
| 17 |
+
transforms.Resize((224,224)),
|
| 18 |
+
transforms.ToTensor(),
|
| 19 |
+
transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225])
|
| 20 |
+
])
|
| 21 |
+
|
| 22 |
+
class_names = [
|
| 23 |
+
'Glioma Tumor',
|
| 24 |
+
'Meningioma Tumor',
|
| 25 |
+
'No Tumor',
|
| 26 |
+
'Pituitary Tumor'
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
def calculate_performance(model):
|
| 30 |
+
model.eval()
|
| 31 |
+
dummy = torch.randn(1,3,224,224).to(device)
|
| 32 |
+
flops, params = profile(model, inputs=(dummy,), verbose=False)
|
| 33 |
+
params_m = round(params/1e6,2)
|
| 34 |
+
flops_b = round(flops/1e9,2)
|
| 35 |
+
import time
|
| 36 |
+
start = time.time()
|
| 37 |
+
_ = model(dummy.cpu())
|
| 38 |
+
cpu_ms = round((time.time() - start)*1000,2)
|
| 39 |
+
if device.type == 'cuda':
|
| 40 |
+
start_event = torch.cuda.Event(enable_timing=True)
|
| 41 |
+
end_event = torch.cuda.Event(enable_timing=True)
|
| 42 |
+
start_event.record()
|
| 43 |
+
_ = model(dummy)
|
| 44 |
+
end_event.record()
|
| 45 |
+
torch.cuda.synchronize()
|
| 46 |
+
gpu_ms = round(start_event.elapsed_time(end_event),2)
|
| 47 |
+
else:
|
| 48 |
+
gpu_ms = None
|
| 49 |
+
return {'params_million':params_m, 'flops_billion':flops_b, 'cpu_ms':cpu_ms, 'gpu_ms':gpu_ms}
|
| 50 |
+
|
| 51 |
+
def predict_and_monitor(version, image):
|
| 52 |
+
try:
|
| 53 |
+
if version not in models_cache:
|
| 54 |
+
models_cache[version] = load_model(version, device)
|
| 55 |
+
model = models_cache[version]
|
| 56 |
+
|
| 57 |
+
if image is None:
|
| 58 |
+
raise gr.Error("Görsel yüklenmedi.")
|
| 59 |
+
img = image.convert("RGB")
|
| 60 |
+
tensor = transform(img).unsqueeze(0).to(device)
|
| 61 |
+
|
| 62 |
+
with torch.no_grad():
|
| 63 |
+
logits = model(tensor)
|
| 64 |
+
probs = F.softmax(logits, dim=1)[0]
|
| 65 |
+
|
| 66 |
+
pred_dict = {class_names[i]: round(float(probs[i]),4) for i in range(len(class_names))}
|
| 67 |
+
metrics = calculate_performance(model)
|
| 68 |
+
|
| 69 |
+
top1 = max(pred_dict, key=pred_dict.get)
|
| 70 |
+
buf = io.BytesIO()
|
| 71 |
+
plt.figure(figsize=(3,3))
|
| 72 |
+
plt.imshow(img)
|
| 73 |
+
plt.title(f"{top1}: {pred_dict[top1]*100:.1f}%")
|
| 74 |
+
plt.axis('off')
|
| 75 |
+
plt.savefig(buf, format='png')
|
| 76 |
+
plt.close()
|
| 77 |
+
buf.seek(0)
|
| 78 |
+
buf_image = Image.open(buf)
|
| 79 |
+
return pred_dict, metrics, buf_image
|
| 80 |
+
except Exception as e:
|
| 81 |
+
raise gr.Error(f"Prediction Error: {e}")
|
| 82 |
+
|
| 83 |
+
with gr.Blocks() as demo:
|
| 84 |
+
gr.Markdown("Tumor Diagnosis with Vbai-TS 2.1(f,c)")
|
| 85 |
+
with gr.Row():
|
| 86 |
+
version = gr.Radio(['f','c'], value='c', label="Model Version | f => Fastest, c => Classic")
|
| 87 |
+
image_in = gr.Image(type="pil", label="MRI or fMRI Image")
|
| 88 |
+
with gr.Row():
|
| 89 |
+
preds = gr.JSON(label="Prediction Probabilities")
|
| 90 |
+
stats = gr.JSON(label="Performance Metrics")
|
| 91 |
+
plot = gr.Image(label="Prediction")
|
| 92 |
+
btn = gr.Button("Run")
|
| 93 |
+
btn.click(fn=predict_and_monitor, inputs=[version, image_in], outputs=[preds, stats, plot])
|
| 94 |
+
|
| 95 |
+
if __name__ == '__main__':
|
| 96 |
+
demo.launch()
|