from diffusers import StableDiffusionPipeline import torch class QwenImageEdit: def __init__(self, model_name="Phr00t/Qwen-Image-Edit-Rapid-AIO"): self.pipe = StableDiffusionPipeline.from_pretrained( model_name, torch_dtype=torch.float16, revision="fp16", # if applicable ).to("cuda" if torch.cuda.is_available() else "cpu") def generate(self, prompt: str, image=None, num_inference_steps=30, guidance_scale=7.5): # If image is provided → image-to-image editing, otherwise vanilla text→image if image is not None: out = self.pipe( prompt=prompt, init_image=image, strength=0.7, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ) else: out = self.pipe( prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ) return out.images[0]