text-to-image / model_utils.py
NMachine's picture
Upload 3 files
77f7c06 verified
from diffusers import StableDiffusionPipeline
import torch
class QwenImageEdit:
def __init__(self, model_name="Phr00t/Qwen-Image-Edit-Rapid-AIO"):
self.pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16,
revision="fp16", # if applicable
).to("cuda" if torch.cuda.is_available() else "cpu")
def generate(self, prompt: str, image=None, num_inference_steps=30, guidance_scale=7.5):
# If image is provided → image-to-image editing, otherwise vanilla text→image
if image is not None:
out = self.pipe(
prompt=prompt,
init_image=image,
strength=0.7,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
)
else:
out = self.pipe(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
)
return out.images[0]