Spaces:
Running
Running
docs(story): try out act to control the arm
Browse files
docs/planning/008_experiment_act.md
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# User Story: Validate ACT Inference with LeRobot (Python) on Real Robot
|
| 2 |
+
|
| 3 |
+
## Summary
|
| 4 |
+
|
| 5 |
+
As the maintainer of **LeRobot.js**, I want to **prove that an ACT policy controls my robot end‑to‑end using LeRobot (Python)** before I invest in the ONNX Runtime Web port. This experiment must run a well‑documented ACT checkpoint, drive the robot in a simple task, and capture latency/fps so we know the approach is viable.
|
| 6 |
+
|
| 7 |
+
## Goals
|
| 8 |
+
|
| 9 |
+
- Use a **well‑documented ACT checkpoint** (ALOHA Transfer‑Cube) as the baseline.
|
| 10 |
+
- Run **LeRobot’s policy server + robot client** for ACT inference on my robot.
|
| 11 |
+
- Achieve **stable control at ≥ 15 fps** with safe motions.
|
| 12 |
+
- Record **metrics (fps, latency)** and a short **video**.
|
| 13 |
+
|
| 14 |
+
## Non‑Goals
|
| 15 |
+
|
| 16 |
+
- No training or data collection.
|
| 17 |
+
- No browser/ONNX work yet.
|
| 18 |
+
- No multi‑robot orchestration.
|
| 19 |
+
|
| 20 |
+
## Environment & Dependencies
|
| 21 |
+
|
| 22 |
+
- Python environment managed with `uv`
|
| 23 |
+
- Packages (minimum):
|
| 24 |
+
- `lerobot` (from GitHub/Hub per official install instructions)
|
| 25 |
+
- `torch`, `torchvision` (matching CUDA/CPU build)
|
| 26 |
+
- `opencv-python`, `pyserial`, `numpy`, `tqdm`, `pyyaml`
|
| 27 |
+
- Hardware:
|
| 28 |
+
- **SO‑100** robot (or your target robot) connected via USB
|
| 29 |
+
- External camera (USB/webcam) aimed at the workspace
|
| 30 |
+
|
| 31 |
+
## Acceptance Criteria
|
| 32 |
+
|
| 33 |
+
1. **Model loads** in the policy server without errors.
|
| 34 |
+
2. **Robot client connects** and streams observations to the server.
|
| 35 |
+
3. **Inference loop runs ≥ 15 fps**, reporting average **model latency < 60 ms** and **end‑to‑end loop < 100 ms** on a laptop.
|
| 36 |
+
4. The robot performs **smooth, safe motions** for at least **30 seconds** without stalls.
|
| 37 |
+
5. Metrics (`metrics.json`) and a **short video** (10–20 s) are produced and saved in the experiment folder.
|
| 38 |
+
6. If the robot is disconnected, the system **falls back to simulation** without crashing.
|
| 39 |
+
|
| 40 |
+
## Experiment Folder Layout
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
experiments/act-inference-python/
|
| 44 |
+
scripts/
|
| 45 |
+
setup_env.sh
|
| 46 |
+
start_policy_server.sh
|
| 47 |
+
start_robot_client.sh
|
| 48 |
+
configs/
|
| 49 |
+
policy_server.yaml # model path, host/port, normalization, chunk size
|
| 50 |
+
robot_client.yaml # robot type/port, camera device, fps target
|
| 51 |
+
logs/
|
| 52 |
+
policy_server.log
|
| 53 |
+
robot_client.log
|
| 54 |
+
artifacts/
|
| 55 |
+
metrics.json
|
| 56 |
+
demo.mp4
|
| 57 |
+
README.md
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Procedure
|
| 61 |
+
|
| 62 |
+
### 1) Setup
|
| 63 |
+
|
| 64 |
+
- Create and activate environment with uv:
|
| 65 |
+
```bash
|
| 66 |
+
uv venv act-py --python 3.10
|
| 67 |
+
source act-py/bin/activate # On Windows: act-py\Scripts\activate
|
| 68 |
+
uv pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121 # or cpu wheels
|
| 69 |
+
uv pip install opencv-python pyserial numpy tqdm pyyaml
|
| 70 |
+
# Install LeRobot (per upstream instructions)
|
| 71 |
+
uv pip install "git+https://github.com/huggingface/lerobot.git"
|
| 72 |
+
```
|
| 73 |
+
- Verify camera and serial access:
|
| 74 |
+
```bash
|
| 75 |
+
python - << 'PY'
|
| 76 |
+
import cv2, serial.tools.list_ports; print("cams ok?", cv2.getBuildInformation() is not None)
|
| 77 |
+
print("serial ports:", [p.device for p in serial.tools.list_ports.comports()])
|
| 78 |
+
PY
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
### 2) Calibrate robot
|
| 82 |
+
|
| 83 |
+
- Use the LeRobot calibration utility for your robot (SO‑100 or your target) and **save calibration data**.
|
| 84 |
+
- Confirm you can **tele‑operate** the robot (keyboard/joystick) for a quick smoke test.
|
| 85 |
+
|
| 86 |
+
### 3) Test basic robot control first
|
| 87 |
+
|
| 88 |
+
- Calibrate the robot using LeRobot Python:
|
| 89 |
+
|
| 90 |
+
```bash
|
| 91 |
+
python -m lerobot.calibrate \
|
| 92 |
+
--robot.type=so100_follower \
|
| 93 |
+
--robot.port=/dev/ttyACM0 # or your actual port
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
- Test teleoperation to ensure robot works:
|
| 97 |
+
```bash
|
| 98 |
+
python -m lerobot.teleoperate \
|
| 99 |
+
--robot.type=so100_follower \
|
| 100 |
+
--robot.port=/dev/ttyACM0 \
|
| 101 |
+
--teleop.type=keyboard # or gamepad if available
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
### 4) Run ACT policy evaluation
|
| 105 |
+
|
| 106 |
+
- Use the LeRobot evaluation script with an ACT model:
|
| 107 |
+
```bash
|
| 108 |
+
python -m lerobot.scripts.eval \
|
| 109 |
+
--policy.path=lerobot/act_aloha_sim_transfer_cube_human \
|
| 110 |
+
--env.type=aloha_sim_transfer_cube \
|
| 111 |
+
--eval.batch_size=1 \
|
| 112 |
+
--eval.n_episodes=5 \
|
| 113 |
+
--device=cuda # or cpu
|
| 114 |
+
```
|
| 115 |
+
- For real robot evaluation (if supported):
|
| 116 |
+
```bash
|
| 117 |
+
python -m lerobot.scripts.eval \
|
| 118 |
+
--policy.path=lerobot/act_aloha_sim_transfer_cube_human \
|
| 119 |
+
--env.type=real_world \
|
| 120 |
+
--robot.type=so100_follower \
|
| 121 |
+
--robot.port=/dev/ttyACM0 \
|
| 122 |
+
--eval.batch_size=1 \
|
| 123 |
+
--eval.n_episodes=3 \
|
| 124 |
+
--device=cuda
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
### 5) Create custom inference script
|
| 128 |
+
|
| 129 |
+
- Create a simplified inference script based on the evaluation example:
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
# custom_act_inference.py - simplified version for testing
|
| 133 |
+
import torch
|
| 134 |
+
from lerobot.common.policies.factory import make_policy
|
| 135 |
+
|
| 136 |
+
# Load policy
|
| 137 |
+
policy = make_policy(policy_path="lerobot/act_aloha_sim_transfer_cube_human")
|
| 138 |
+
policy.eval()
|
| 139 |
+
|
| 140 |
+
# Run inference loop with robot
|
| 141 |
+
# ... (see examples/2_evaluate_pretrained_policy.py)
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
### 6) Observe & record
|
| 145 |
+
|
| 146 |
+
- Record a **10–20 s video** of the behavior (screen + robot) and save to `artifacts/demo.mp4`.
|
| 147 |
+
- Collect metrics from the evaluation output (LeRobot eval script provides detailed metrics).
|
| 148 |
+
- Check the generated `eval_info.json` for performance data.
|
| 149 |
+
|
| 150 |
+
### 7) Tuning if needed
|
| 151 |
+
|
| 152 |
+
- If fps < 15:
|
| 153 |
+
- Reduce image size (e.g., 224×224), drop sequence horizon.
|
| 154 |
+
- Lower camera fps (e.g., 30 → 20).
|
| 155 |
+
- Ensure USB bandwidth is not saturated.
|
| 156 |
+
- If motions are jerky:
|
| 157 |
+
- Smooth actions (EMA) in client; clamp deltas per step.
|
| 158 |
+
- Verify calibration and units match the policy’s action space.
|
| 159 |
+
|
| 160 |
+
### 8) Exit & cleanup
|
| 161 |
+
|
| 162 |
+
- Stop any running processes; ensure robot is safely positioned and torque is disabled.
|
| 163 |
+
|
| 164 |
+
## Deliverables
|
| 165 |
+
|
| 166 |
+
- `artifacts/eval_info.json` with evaluation metrics from LeRobot
|
| 167 |
+
- `artifacts/demo.mp4` short clip of robot behavior
|
| 168 |
+
- `artifacts/RESULTS.md` summary of findings and next steps for LeRobot.js
|
| 169 |
+
|
| 170 |
+
## Risks & Fallbacks
|
| 171 |
+
|
| 172 |
+
- **I/O schema mismatch** (obs/action names or shapes): add a small adapter layer in client to map to the policy’s expected schema.
|
| 173 |
+
- **Camera latency**: prefer MJPEG or raw; set fixed resolution; check exposure.
|
| 174 |
+
- **Serial jitter**: set consistent baud rate; use non‑blocking writes; cap action deltas.
|
| 175 |
+
- **Model not compatible with robot**: switch to a simpler behavior checkpoint or run in simulation to validate the server–client link first.
|
| 176 |
+
|
| 177 |
+
## Definition of Done
|
| 178 |
+
|
| 179 |
+
- The ACT checkpoint controls the robot (or the simulator) via LeRobot Python with stable fps and safe motion, producing metrics and a demo video. This de‑risks the next step: **export to ONNX and port to ORT Web**.
|