File size: 7,886 Bytes
20f34b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""

Arvanu Chronos Forecaster - Time Series Prediction API

Part of the Arvanu AI Prediction Ensemble for Premium Tiers



Uses amazon/chronos-bolt-base for fast, accurate probabilistic forecasting

of market odds trajectories.

"""

import gradio as gr
import numpy as np
import torch
from chronos import ChronosBoltPipeline
import json

# Load model on startup (cached)
print("Loading Chronos-Bolt model...")
pipeline = ChronosBoltPipeline.from_pretrained(
    "amazon/chronos-bolt-base",
    device_map="cpu",  # HF free tier is CPU only
    torch_dtype=torch.float32,
)
print("Model loaded successfully!")


def forecast_odds(

    historical_prices: str,

    prediction_horizon: int = 24,

    num_samples: int = 20,

) -> dict:
    """

    Forecast market odds trajectory.

    

    Args:

        historical_prices: JSON array of historical YES prices (0-1 range)

                          e.g., "[0.52, 0.54, 0.55, 0.58, 0.56, ...]"

        prediction_horizon: Number of time steps to forecast (default: 24)

        num_samples: Number of sample trajectories for uncertainty (default: 20)

    

    Returns:

        JSON with forecast, trend analysis, and confidence metrics

    """
    try:
        # Parse input
        if isinstance(historical_prices, str):
            prices = json.loads(historical_prices)
        else:
            prices = list(historical_prices)
        
        if len(prices) < 10:
            return {"error": "Need at least 10 historical data points"}
        
        # Ensure values are in valid range
        prices = [max(0.01, min(0.99, float(p))) for p in prices]
        
        # Convert to tensor
        context = torch.tensor(prices, dtype=torch.float32).unsqueeze(0)
        
        # Generate forecasts
        with torch.no_grad():
            forecasts = pipeline.predict(
                context=context,
                prediction_length=prediction_horizon,
                num_samples=num_samples,
            )
        
        # forecasts shape: (1, num_samples, prediction_horizon)
        forecast_np = forecasts[0].numpy()
        
        # Calculate quantiles
        q10 = np.percentile(forecast_np, 10, axis=0).tolist()
        q50 = np.percentile(forecast_np, 50, axis=0).tolist()  # Median
        q90 = np.percentile(forecast_np, 90, axis=0).tolist()
        
        # Trend analysis
        current_price = prices[-1]
        forecast_end = q50[-1]
        price_change = forecast_end - current_price
        
        # Determine trend
        if price_change > 0.03:
            trend = "strongly_bullish"
            trend_strength = min(1.0, price_change * 10)
        elif price_change > 0.01:
            trend = "bullish"
            trend_strength = min(0.7, price_change * 10)
        elif price_change < -0.03:
            trend = "strongly_bearish"
            trend_strength = min(1.0, abs(price_change) * 10)
        elif price_change < -0.01:
            trend = "bearish"
            trend_strength = min(0.7, abs(price_change) * 10)
        else:
            trend = "neutral"
            trend_strength = 0.3
        
        # Calculate momentum (rate of change)
        if len(prices) >= 5:
            recent_momentum = (prices[-1] - prices[-5]) / 5
        else:
            recent_momentum = 0
        
        # Volatility from forecast spread
        avg_spread = np.mean(np.array(q90) - np.array(q10))
        volatility = float(avg_spread)
        
        # Confidence based on forecast tightness and trend clarity
        # Tighter forecasts = higher confidence
        confidence = max(0.3, min(0.95, 1.0 - (volatility * 2)))
        
        # Adjust confidence based on trend strength
        if trend in ["strongly_bullish", "strongly_bearish"]:
            confidence = min(0.95, confidence * 1.15)
        
        # Direction for ensemble (matches NLP output format)
        if trend in ["bullish", "strongly_bullish"]:
            direction = "YES"
            direction_confidence = 0.5 + (trend_strength * 0.4)
        elif trend in ["bearish", "strongly_bearish"]:
            direction = "NO"
            direction_confidence = 0.5 + (trend_strength * 0.4)
        else:
            # Neutral - slight lean based on momentum
            direction = "YES" if recent_momentum > 0 else "NO"
            direction_confidence = 0.5
        
        return {
            "success": True,
            "forecast": {
                "median": q50,
                "lower_bound": q10,
                "upper_bound": q90,
            },
            "analysis": {
                "trend": trend,
                "trend_strength": round(trend_strength, 3),
                "price_change_predicted": round(price_change, 4),
                "current_price": round(current_price, 4),
                "forecast_end_price": round(forecast_end, 4),
                "momentum": round(recent_momentum, 4),
                "volatility": round(volatility, 4),
            },
            "ensemble_output": {
                "direction": direction,
                "confidence": round(direction_confidence, 3),
                "model_confidence": round(confidence, 3),
            },
            "meta": {
                "model": "chronos-bolt-base",
                "input_length": len(prices),
                "horizon": prediction_horizon,
            }
        }
        
    except Exception as e:
        return {
            "success": False,
            "error": str(e),
        }


def forecast_api(historical_prices: str, prediction_horizon: int = 24) -> str:
    """API endpoint wrapper that returns JSON string"""
    result = forecast_odds(historical_prices, prediction_horizon)
    return json.dumps(result, indent=2)


# Create Gradio interface
with gr.Blocks(title="Arvanu Chronos Forecaster") as demo:
    gr.Markdown("""

    # 🔮 Arvanu Chronos Forecaster

    

    **Time-Series Prediction API for Market Odds**

    

    Part of the Arvanu AI Prediction Ensemble. Uses Amazon's Chronos-Bolt 

    for probabilistic forecasting of market price trajectories.

    

    ## API Usage

    

    ```python

    import requests

    

    response = requests.post(

        "https://mythman-arvanu-chronos.hf.space/api/predict",

        json={

            "data": [

                "[0.52, 0.54, 0.55, 0.58, 0.56, 0.59, 0.61, 0.60, 0.62, 0.64]",

                24  # prediction horizon

            ]

        }

    )

    result = response.json()

    ```

    """)
    
    with gr.Row():
        with gr.Column():
            prices_input = gr.Textbox(
                label="Historical Prices (JSON array)",
                placeholder='[0.52, 0.54, 0.55, 0.58, 0.56, 0.59, 0.61, 0.60, 0.62, 0.64]',
                lines=3,
            )
            horizon_input = gr.Slider(
                minimum=1,
                maximum=48,
                value=24,
                step=1,
                label="Prediction Horizon (time steps)",
            )
            submit_btn = gr.Button("Generate Forecast", variant="primary")
        
        with gr.Column():
            output = gr.JSON(label="Forecast Result")
    
    submit_btn.click(
        fn=forecast_odds,
        inputs=[prices_input, horizon_input],
        outputs=output,
    )
    
    gr.Examples(
        examples=[
            ['[0.52, 0.54, 0.55, 0.58, 0.56, 0.59, 0.61, 0.60, 0.62, 0.64, 0.63, 0.65]', 24],
            ['[0.72, 0.71, 0.69, 0.68, 0.70, 0.67, 0.65, 0.64, 0.63, 0.62, 0.60, 0.58]', 12],
            ['[0.50, 0.51, 0.50, 0.49, 0.50, 0.51, 0.50, 0.50, 0.49, 0.50, 0.51, 0.50]', 24],
        ],
        inputs=[prices_input, horizon_input],
    )

# Launch with API enabled
demo.launch()