Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline, AutoTokenizer
|
| 3 |
from typing import List, Dict, Any, Tuple
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# CPU-модели (только одна маленькая модель для экономии памяти)
|
| 7 |
-
# Исправлено: используем словарь вместо множества
|
| 8 |
MODELS = {
|
| 9 |
"Qwen2.5-0.5B": "Qwen/Qwen2.5-0.5B-Instruct",
|
| 10 |
"Qwen2.5-1.5B": "Qwen/Qwen2.5-1.5B-Instruct",
|
|
@@ -13,23 +16,39 @@ MODELS = {
|
|
| 13 |
def load_model(model_key: str):
|
| 14 |
model_id = MODELS[model_key]
|
| 15 |
print(f"🚀 Загрузка {model_id}...")
|
|
|
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 17 |
if tokenizer.pad_token is None:
|
| 18 |
tokenizer.pad_token = tokenizer.eos_token
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
pipe = pipeline(
|
| 21 |
"text-generation",
|
| 22 |
-
model=
|
| 23 |
tokenizer=tokenizer,
|
| 24 |
-
|
| 25 |
-
device_map=None, # Explicitly set to CPU
|
| 26 |
max_new_tokens=128, # Ещё меньше токенов для экономии памяти
|
| 27 |
do_sample=True,
|
| 28 |
temperature=0.7,
|
| 29 |
-
pad_token_id=tokenizer.eos_token_id
|
| 30 |
-
# Memory optimization parameters
|
| 31 |
-
low_cpu_mem_usage=True,
|
| 32 |
-
trust_remote_code=True
|
| 33 |
)
|
| 34 |
print(f"✅ {model_id} загружена!")
|
| 35 |
return pipe
|
|
@@ -57,50 +76,112 @@ def respond(message: str,
|
|
| 57 |
messages.append({"role": "user", "content": message})
|
| 58 |
|
| 59 |
tokenizer = pipe.tokenizer
|
| 60 |
-
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
print(f"✅ Ответ: {bot_reply[:50]}...")
|
| 66 |
|
| 67 |
-
new_history = history + [
|
|
|
|
|
|
|
|
|
|
| 68 |
return new_history, "", gr.update(value="")
|
| 69 |
|
| 70 |
except Exception as e:
|
| 71 |
error_msg = f"❌ {model_key}: {str(e)}"
|
| 72 |
print(f"💥 {error_msg}")
|
| 73 |
-
new_history = history + [
|
|
|
|
|
|
|
|
|
|
| 74 |
return new_history, error_msg, gr.update(value="")
|
| 75 |
|
| 76 |
-
with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)") as demo:
|
| 77 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
with gr.Row():
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
chatbot = gr.Chatbot(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
with gr.Row():
|
| 87 |
-
msg_input = gr.Textbox(
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
with gr.Row():
|
| 91 |
-
clear_btn = gr.Button("🗑️ Очистить")
|
| 92 |
-
retry_btn = gr.Button("🔄 Повторить")
|
| 93 |
|
| 94 |
-
status = gr.Textbox(
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
|
|
|
| 100 |
return [], "", gr.update(value="")
|
| 101 |
-
clear_btn.click(clear, outputs=[chatbot, status, msg_input])
|
| 102 |
|
| 103 |
-
def
|
| 104 |
if history:
|
| 105 |
last_user_msg = None
|
| 106 |
for msg in reversed(history):
|
|
@@ -109,7 +190,48 @@ with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)
|
|
| 109 |
break
|
| 110 |
return last_user_msg if last_user_msg else ""
|
| 111 |
return ""
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
if __name__ == "__main__":
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
from typing import List, Dict, Any, Tuple
|
| 4 |
import torch
|
| 5 |
+
import warnings
|
| 6 |
+
|
| 7 |
+
# Подавляем ненужные предупреждения
|
| 8 |
+
warnings.filterwarnings("ignore", message=".*low_cpu_mem_usage.*")
|
| 9 |
|
| 10 |
# CPU-модели (только одна маленькая модель для экономии памяти)
|
|
|
|
| 11 |
MODELS = {
|
| 12 |
"Qwen2.5-0.5B": "Qwen/Qwen2.5-0.5B-Instruct",
|
| 13 |
"Qwen2.5-1.5B": "Qwen/Qwen2.5-1.5B-Instruct",
|
|
|
|
| 16 |
def load_model(model_key: str):
|
| 17 |
model_id = MODELS[model_key]
|
| 18 |
print(f"🚀 Загрузка {model_id}...")
|
| 19 |
+
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 21 |
if tokenizer.pad_token is None:
|
| 22 |
tokenizer.pad_token = tokenizer.eos_token
|
| 23 |
|
| 24 |
+
# Сначала загружаем модель отдельно с оптимизацией памяти
|
| 25 |
+
try:
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
model_id,
|
| 28 |
+
torch_dtype=torch.float32,
|
| 29 |
+
device_map=None, # Используем CPU
|
| 30 |
+
low_cpu_mem_usage=True,
|
| 31 |
+
trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(f"⚠️ Не удалось загрузить с low_cpu_mem_usage: {e}")
|
| 35 |
+
print("🔄 Пробуем без low_cpu_mem_usage...")
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
model_id,
|
| 38 |
+
torch_dtype=torch.float32,
|
| 39 |
+
trust_remote_code=True
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Затем создаем pipeline
|
| 43 |
pipe = pipeline(
|
| 44 |
"text-generation",
|
| 45 |
+
model=model,
|
| 46 |
tokenizer=tokenizer,
|
| 47 |
+
device=-1, # Явно указываем CPU (-1 означает CPU)
|
|
|
|
| 48 |
max_new_tokens=128, # Ещё меньше токенов для экономии памяти
|
| 49 |
do_sample=True,
|
| 50 |
temperature=0.7,
|
| 51 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
print(f"✅ {model_id} загружена!")
|
| 54 |
return pipe
|
|
|
|
| 76 |
messages.append({"role": "user", "content": message})
|
| 77 |
|
| 78 |
tokenizer = pipe.tokenizer
|
|
|
|
| 79 |
|
| 80 |
+
# Используем чат-шаблон для Qwen моделей
|
| 81 |
+
try:
|
| 82 |
+
prompt = tokenizer.apply_chat_template(
|
| 83 |
+
messages,
|
| 84 |
+
tokenize=False,
|
| 85 |
+
add_generation_prompt=True
|
| 86 |
+
)
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"⚠️ Ошибка применения чат-шаблона: {e}")
|
| 89 |
+
# Альтернативный способ форматирования
|
| 90 |
+
prompt = ""
|
| 91 |
+
for msg in messages:
|
| 92 |
+
if msg["role"] == "system":
|
| 93 |
+
prompt += f"System: {msg['content']}\n\n"
|
| 94 |
+
elif msg["role"] == "user":
|
| 95 |
+
prompt += f"User: {msg['content']}\n\n"
|
| 96 |
+
elif msg["role"] == "assistant":
|
| 97 |
+
prompt += f"Assistant: {msg['content']}\n\n"
|
| 98 |
+
prompt += "Assistant:"
|
| 99 |
+
|
| 100 |
+
outputs = pipe(
|
| 101 |
+
prompt,
|
| 102 |
+
max_new_tokens=256, # Уменьшил для экономии памяти
|
| 103 |
+
do_sample=True,
|
| 104 |
+
temperature=0.7,
|
| 105 |
+
repetition_penalty=1.1
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Извлекаем ответ
|
| 109 |
+
generated_text = outputs[0]["generated_text"]
|
| 110 |
+
if generated_text.startswith(prompt):
|
| 111 |
+
bot_reply = generated_text[len(prompt):].strip()
|
| 112 |
+
else:
|
| 113 |
+
bot_reply = generated_text.strip()
|
| 114 |
|
| 115 |
print(f"✅ Ответ: {bot_reply[:50]}...")
|
| 116 |
|
| 117 |
+
new_history = history + [
|
| 118 |
+
{"role": "user", "content": message},
|
| 119 |
+
{"role": "assistant", "content": bot_reply}
|
| 120 |
+
]
|
| 121 |
return new_history, "", gr.update(value="")
|
| 122 |
|
| 123 |
except Exception as e:
|
| 124 |
error_msg = f"❌ {model_key}: {str(e)}"
|
| 125 |
print(f"💥 {error_msg}")
|
| 126 |
+
new_history = history + [
|
| 127 |
+
{"role": "user", "content": message},
|
| 128 |
+
{"role": "assistant", "content": error_msg}
|
| 129 |
+
]
|
| 130 |
return new_history, error_msg, gr.update(value="")
|
| 131 |
|
| 132 |
+
with gr.Blocks(title="🚀 Локальный HF Чат (на слабом CPU!)", theme=gr.themes.Soft()) as demo:
|
| 133 |
+
gr.Markdown("""
|
| 134 |
+
# 🚀 Локальный Inference (без API!)
|
| 135 |
+
**Маленькие модели** — 1-3 сек CPU. Большие думают ооочень долго. Нет limits/token. В качестве примера.
|
| 136 |
+
|
| 137 |
+
⚠️ **Внимание**: Модели загружаются при первшем выборе и могут занять несколько минут!
|
| 138 |
+
""")
|
| 139 |
|
| 140 |
with gr.Row():
|
| 141 |
+
model_dropdown = gr.Dropdown(
|
| 142 |
+
choices=list(MODELS.keys()),
|
| 143 |
+
value="Qwen2.5-0.5B",
|
| 144 |
+
label="🧠 Модель",
|
| 145 |
+
info="Выберите модель (загрузка при первшем использовании)"
|
| 146 |
+
)
|
| 147 |
+
system_prompt = gr.Textbox(
|
| 148 |
+
label="📝 System Prompt",
|
| 149 |
+
placeholder="Ты весёлый и полезный ИИ-ассистент.",
|
| 150 |
+
lines=2,
|
| 151 |
+
value="Ты весёлый и полезный ИИ-ассистент."
|
| 152 |
+
)
|
| 153 |
|
| 154 |
+
chatbot = gr.Chatbot(
|
| 155 |
+
height=400,
|
| 156 |
+
label="Чат",
|
| 157 |
+
avatar_images=(None, "🤖")
|
| 158 |
+
)
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
+
msg_input = gr.Textbox(
|
| 162 |
+
placeholder="Напишите сообщение... (Enter для отправки)",
|
| 163 |
+
show_label=False,
|
| 164 |
+
lines=2,
|
| 165 |
+
scale=4
|
| 166 |
+
)
|
| 167 |
+
send_btn = gr.Button("📤 Отправить", variant="primary", scale=1)
|
| 168 |
|
| 169 |
with gr.Row():
|
| 170 |
+
clear_btn = gr.Button("🗑️ Очистить историю", variant="secondary")
|
| 171 |
+
retry_btn = gr.Button("🔄 Повторить последнее", variant="secondary")
|
| 172 |
|
| 173 |
+
status = gr.Textbox(
|
| 174 |
+
label="Статус",
|
| 175 |
+
interactive=False,
|
| 176 |
+
lines=3,
|
| 177 |
+
placeholder="Здесь будут отображаться логи работы..."
|
| 178 |
+
)
|
| 179 |
|
| 180 |
+
# Обработчики событий
|
| 181 |
+
def clear_chat():
|
| 182 |
return [], "", gr.update(value="")
|
|
|
|
| 183 |
|
| 184 |
+
def retry_last(history: List[Dict[str, str]]):
|
| 185 |
if history:
|
| 186 |
last_user_msg = None
|
| 187 |
for msg in reversed(history):
|
|
|
|
| 190 |
break
|
| 191 |
return last_user_msg if last_user_msg else ""
|
| 192 |
return ""
|
| 193 |
+
|
| 194 |
+
# Привязка событий
|
| 195 |
+
send_btn.click(
|
| 196 |
+
fn=respond,
|
| 197 |
+
inputs=[msg_input, chatbot, model_dropdown, system_prompt],
|
| 198 |
+
outputs=[chatbot, status, msg_input]
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
msg_input.submit(
|
| 202 |
+
fn=respond,
|
| 203 |
+
inputs=[msg_input, chatbot, model_dropdown, system_prompt],
|
| 204 |
+
outputs=[chatbot, status, msg_input]
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
clear_btn.click(
|
| 208 |
+
fn=clear_chat,
|
| 209 |
+
outputs=[chatbot, status, msg_input]
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
retry_btn.click(
|
| 213 |
+
fn=retry_last,
|
| 214 |
+
inputs=[chatbot],
|
| 215 |
+
outputs=[msg_input]
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Информация о состоянии
|
| 219 |
+
gr.Markdown("""
|
| 220 |
+
### 💡 Советы:
|
| 221 |
+
1. Первая загрузка модели может занять 1-5 минут
|
| 222 |
+
2. Ответы генерируются на CPU, будьте терпеливы
|
| 223 |
+
3. Для более быстрых ответов используйте Qwen2.5-0.5B
|
| 224 |
+
4. Очищайте историю, если чат становится медленным
|
| 225 |
+
""")
|
| 226 |
|
| 227 |
if __name__ == "__main__":
|
| 228 |
+
print("=" * 50)
|
| 229 |
+
print("🚀 Запуск локального чат-бота на CPU")
|
| 230 |
+
print("=" * 50)
|
| 231 |
+
|
| 232 |
+
demo.queue(max_size=5).launch(
|
| 233 |
+
debug=False,
|
| 234 |
+
show_error=True,
|
| 235 |
+
server_name="0.0.0.0",
|
| 236 |
+
server_port=7860
|
| 237 |
+
)
|