Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,3 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import snapshot_download
|
| 3 |
-
import sys
|
| 4 |
-
print(sys.path)
|
| 5 |
|
| 6 |
-
|
| 7 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 8 |
-
|
| 9 |
-
model_id = "wbbbbb/wav2vec2-large-chinese-zh-cn"
|
| 10 |
-
|
| 11 |
-
model = snapshot_download(repo_id=model_id, cache_dir='cache')
|
| 12 |
-
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
| 13 |
-
|
| 14 |
-
def transcribe(audio):
|
| 15 |
-
# 语音识别接口
|
| 16 |
-
inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 17 |
-
with torch.no_grad():
|
| 18 |
-
logits = model(inputs.input_values).logits
|
| 19 |
-
prediction = processor.batch_decode(torch.argmax(logits, dim=-1))
|
| 20 |
-
return prediction[0]
|
| 21 |
-
|
| 22 |
-
iface = gr.Interface(fn=transcribe, inputs="audio", outputs="text")
|
| 23 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
gr.Interface.load("models/wbbbbb/wav2vec2-large-chinese-zh-cn").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|