Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
model_name = "Qwen/Qwen2.5-0.5B"
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
def highlight_probabilities(text):
|
| 10 |
+
inputs = tokenizer([text], return_tensors="pt").input_ids.to(model.device)
|
| 11 |
+
inp, outp = inputs[:, :-1], inputs[:, 1:].unsqueeze(-1)
|
| 12 |
+
|
| 13 |
+
with torch.no_grad():
|
| 14 |
+
logits = model(inp).logits
|
| 15 |
+
|
| 16 |
+
probs = torch.softmax(logits, dim=-1)
|
| 17 |
+
chosen = torch.gather(probs, dim=2, index=outp).squeeze(-1).cpu().numpy()[0]
|
| 18 |
+
|
| 19 |
+
tokens = tokenizer.convert_ids_to_tokens(inp[0].cpu().tolist())
|
| 20 |
+
highlights = [
|
| 21 |
+
(tok.replace("Ġ", ""), float(p)) for tok, p in zip(tokens, chosen)
|
| 22 |
+
]
|
| 23 |
+
return highlights
|
| 24 |
+
|
| 25 |
+
with gr.Blocks() as demo:
|
| 26 |
+
gr.Markdown("## Token-by-Token Probability Highlighter")
|
| 27 |
+
txt = gr.Textbox(
|
| 28 |
+
label="Input Text",
|
| 29 |
+
placeholder="Type or paste any text here…" ,
|
| 30 |
+
lines=4
|
| 31 |
+
)
|
| 32 |
+
highlighted = gr.HighlightedText(
|
| 33 |
+
label="Token Probabilities",
|
| 34 |
+
combine_adjacent=True,
|
| 35 |
+
show_legend=True,
|
| 36 |
+
)
|
| 37 |
+
txt.change(
|
| 38 |
+
fn=highlight_probabilities,
|
| 39 |
+
inputs=txt,
|
| 40 |
+
outputs=highlighted
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
demo.launch()
|