import gradio as gr from huggingface_hub import InferenceClient def respond( message, history: list[dict[str, str]], system_message, max_tokens, temperature, top_p, hf_token: gr.OAuthToken, ): """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient(token=hf_token.token, model="deepseek-ai/DeepSeek-V3.2") messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = message.choices token = "" if len(choices) and choices[0].delta.content: token = choices[0].delta.content response += token yield response theme = gr.themes.Soft( primary_hue="indigo", secondary_hue="violet", ).set( button_primary_background_fill="*primary_500", button_primary_text_color="white", ) css = """ h1 { text-align: center; color: #4f46e5; font-size: 2em; margin-bottom: 0.5em; } .login-text { font-size: 0.9em; color: #666; text-align: center; margin-top: 5px; } """ chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Blocks(theme=theme, css=css) as demo: gr.Markdown("# ✨ Le Chatbot qu'il vous faut") gr.Markdown("Une interface intelligente propulsée par DeepSeek AI.", elem_classes="description") with gr.Sidebar(): gr.Markdown("### 🔐 Authentification") gr.LoginButton(value="Connexion HF") gr.Markdown("Connectez-vous pour utiliser le modèle.") chatbot.render() if __name__ == "__main__": demo.launch(share=True)