Spaces:
Sleeping
Sleeping
Upload Z_Score.py
Browse files- Z_Score.py +1128 -0
Z_Score.py
ADDED
|
@@ -0,0 +1,1128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import random
|
| 6 |
+
import re
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import seaborn as sb
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import matplotlib.colors as mplc
|
| 12 |
+
import subprocess
|
| 13 |
+
import warnings
|
| 14 |
+
from scipy import signal
|
| 15 |
+
from scipy.stats.stats import pearsonr
|
| 16 |
+
import plotly.figure_factory as ff
|
| 17 |
+
import plotly
|
| 18 |
+
import plotly.graph_objs as go
|
| 19 |
+
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
|
| 20 |
+
import plotly.express as px
|
| 21 |
+
from my_modules import *
|
| 22 |
+
import panel as pn
|
| 23 |
+
|
| 24 |
+
#Silence FutureWarnings & UserWarnings
|
| 25 |
+
warnings.filterwarnings('ignore', category= FutureWarning)
|
| 26 |
+
warnings.filterwarnings('ignore', category= UserWarning)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# ## III.2. *DIRECTORIES
|
| 30 |
+
|
| 31 |
+
# In[4]:
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# Set base directory
|
| 35 |
+
|
| 36 |
+
##### MAC WORKSTATION #####
|
| 37 |
+
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
|
| 38 |
+
###########################
|
| 39 |
+
|
| 40 |
+
##### WINDOWS WORKSTATION #####
|
| 41 |
+
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
|
| 42 |
+
###############################
|
| 43 |
+
|
| 44 |
+
##### LOCAL WORKSTATION #####
|
| 45 |
+
base_dir = r'/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431'
|
| 46 |
+
#############################
|
| 47 |
+
|
| 48 |
+
#set_name = 'Set_A'
|
| 49 |
+
set_name = 'test'
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# In[5]:
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
base_dir = '/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431'
|
| 57 |
+
set_path = 'test'
|
| 58 |
+
selected_metadata_files = "['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']"
|
| 59 |
+
ls_samples = "['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']"
|
| 60 |
+
print(base_dir)
|
| 61 |
+
print(set_path)
|
| 62 |
+
print(ls_samples)
|
| 63 |
+
print(selected_metadata_files)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
project_name = set_name # Project name
|
| 67 |
+
step_suffix = 'zscore' # Curent part (here part III)
|
| 68 |
+
previous_step_suffix_long = "_bs" # Previous part (here BS NOTEBOOK)
|
| 69 |
+
|
| 70 |
+
# Initial input data directory
|
| 71 |
+
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
| 72 |
+
|
| 73 |
+
# ZSCORE/LOG2 output directories
|
| 74 |
+
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
|
| 75 |
+
# ZSCORE/LOG2 images subdirectory
|
| 76 |
+
output_images_dir = os.path.join(output_data_dir,"images")
|
| 77 |
+
|
| 78 |
+
# Data and Metadata directories
|
| 79 |
+
# Metadata directories
|
| 80 |
+
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
| 81 |
+
# images subdirectory
|
| 82 |
+
metadata_images_dir = os.path.join(metadata_dir,"images")
|
| 83 |
+
|
| 84 |
+
# Create directories if they don't already exist
|
| 85 |
+
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
| 86 |
+
if not os.path.exists(d):
|
| 87 |
+
print("Creation of the" , d, "directory...")
|
| 88 |
+
os.makedirs(d)
|
| 89 |
+
else :
|
| 90 |
+
print("The", d, "directory already exists !")
|
| 91 |
+
|
| 92 |
+
os.chdir(input_data_dir)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# In[7]:
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Verify paths
|
| 99 |
+
print('base_dir :', base_dir)
|
| 100 |
+
print('input_data_dir :', input_data_dir)
|
| 101 |
+
print('output_data_dir :', output_data_dir)
|
| 102 |
+
print('output_images_dir :', output_images_dir)
|
| 103 |
+
print('metadata_dir :', metadata_dir)
|
| 104 |
+
print('metadata_images_dir :', metadata_images_dir)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# ## III.3. FILES
|
| 108 |
+
#Don't forget to put your data in the projname_data directory !
|
| 109 |
+
# ### III.3.1. METADATA
|
| 110 |
+
|
| 111 |
+
# In[8]:
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Import all metadata we need from the BS chapter
|
| 115 |
+
|
| 116 |
+
# METADATA
|
| 117 |
+
filename = "marker_intensity_metadata.csv"
|
| 118 |
+
filename = os.path.join(metadata_dir, filename)
|
| 119 |
+
|
| 120 |
+
# Check file exists
|
| 121 |
+
if not os.path.exists(filename):
|
| 122 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 123 |
+
else :
|
| 124 |
+
print("The",filename,"file was imported for further analysis!")
|
| 125 |
+
|
| 126 |
+
# Open, read in information
|
| 127 |
+
metadata = pd.read_csv(filename)
|
| 128 |
+
|
| 129 |
+
# Verify size with verify_line_no() function in my_modules.py
|
| 130 |
+
#verify_line_no(filename, metadata.shape[0] + 1)
|
| 131 |
+
|
| 132 |
+
# Verify headers
|
| 133 |
+
exp_cols = ['Round','Target','Channel','target_lower','full_column','marker','localisation']
|
| 134 |
+
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
| 135 |
+
|
| 136 |
+
metadata = metadata.dropna()
|
| 137 |
+
metadata.head()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# ### III.3.2. NOT_INTENSITIES
|
| 141 |
+
|
| 142 |
+
# In[9]:
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
filename = "not_intensities.csv"
|
| 146 |
+
filename = os.path.join(metadata_dir, filename)
|
| 147 |
+
|
| 148 |
+
# Check file exists
|
| 149 |
+
if not os.path.exists(filename):
|
| 150 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 151 |
+
else :
|
| 152 |
+
print("The",filename,"file was imported for further analysis!")
|
| 153 |
+
|
| 154 |
+
# Open, read in information
|
| 155 |
+
not_intensities = []
|
| 156 |
+
with open(filename, 'r') as fh:
|
| 157 |
+
not_intensities = fh.read().strip().split("\n")
|
| 158 |
+
# take str, strip whitespace, split on new line character
|
| 159 |
+
|
| 160 |
+
# Verify size
|
| 161 |
+
print("Verifying data read from file is the correct length...\n")
|
| 162 |
+
#verify_line_no(filename, len(not_intensities))
|
| 163 |
+
|
| 164 |
+
# Print to console
|
| 165 |
+
print("not_intensities =\n", not_intensities)
|
| 166 |
+
pd.DataFrame(not_intensities)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
# ### III.3.3. FULL_TO_SHORT_COLUMN_NAMES
|
| 170 |
+
|
| 171 |
+
# In[10]:
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
filename = "full_to_short_column_names.csv"
|
| 175 |
+
filename = os.path.join(metadata_dir, filename)
|
| 176 |
+
|
| 177 |
+
# Check file exists
|
| 178 |
+
if not os.path.exists(filename):
|
| 179 |
+
print("WARNING: Could not find desired file: " + filename)
|
| 180 |
+
else :
|
| 181 |
+
print("The",filename,"file was imported for further analysis!")
|
| 182 |
+
|
| 183 |
+
# Open, read in information
|
| 184 |
+
df = pd.read_csv(filename, header = 0)
|
| 185 |
+
|
| 186 |
+
# Verify size
|
| 187 |
+
print("Verifying data read from file is the correct length...\n")
|
| 188 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 189 |
+
|
| 190 |
+
# Turn into dictionary
|
| 191 |
+
full_to_short_names = df.set_index('full_name').T.to_dict('records')[0]
|
| 192 |
+
|
| 193 |
+
# CD45 instead of CD45b
|
| 194 |
+
if project_name == 'Slide_A' :
|
| 195 |
+
full_to_short_names['CD45_Cytoplasm_Intensity_Average'] = full_to_short_names.pop('CD45b_Cytoplasm_Intensity_Average')
|
| 196 |
+
full_to_short_names['CD45_Cytoplasm_Intensity_Average'] = 'CD45_Cytoplasm'
|
| 197 |
+
|
| 198 |
+
# Print information
|
| 199 |
+
print('full_to_short_names =\n',full_to_short_names)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
# ### III.3.4. SHORT_TO_FULL_COLUMN_NAMES
|
| 203 |
+
|
| 204 |
+
# In[11]:
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
filename = "short_to_full_column_names.csv"
|
| 208 |
+
filename = os.path.join(metadata_dir, filename)
|
| 209 |
+
|
| 210 |
+
# Check file exists
|
| 211 |
+
if not os.path.exists(filename):
|
| 212 |
+
print("WARNING: Could not find desired file: " + filename)
|
| 213 |
+
else :
|
| 214 |
+
print("The",filename,"file was imported for further analysis!")
|
| 215 |
+
|
| 216 |
+
# Open, read in information
|
| 217 |
+
df = pd.read_csv(filename, header = 0)
|
| 218 |
+
|
| 219 |
+
# Verify size
|
| 220 |
+
print("Verifying data read from file is the correct length...\n")
|
| 221 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 222 |
+
|
| 223 |
+
# Turn into dictionary
|
| 224 |
+
short_to_full_names = df.set_index('short_name').T.to_dict('records')[0]
|
| 225 |
+
|
| 226 |
+
# CD45 instead of CD45b
|
| 227 |
+
if project_name == 'Slide_A' :
|
| 228 |
+
short_to_full_names['CD45_Cytoplasm'] = short_to_full_names.pop('CD45b_Cytoplasm')
|
| 229 |
+
short_to_full_names['CD45_Cytoplasm'] = 'CD45_Cytoplasm_Intensity_Average'
|
| 230 |
+
|
| 231 |
+
# Print information
|
| 232 |
+
print('short_to_full_names =\n',short_to_full_names)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# ### III.3.5. SAMPLES COLORS
|
| 236 |
+
|
| 237 |
+
# In[12]:
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
filename = "sample_color_data.csv"
|
| 241 |
+
filename = os.path.join(metadata_dir, filename)
|
| 242 |
+
|
| 243 |
+
# Check file exists
|
| 244 |
+
if not os.path.exists(filename):
|
| 245 |
+
print("WARNING: Could not find desired file: " + filename)
|
| 246 |
+
else :
|
| 247 |
+
print("The",filename,"file was imported for further analysis!")
|
| 248 |
+
|
| 249 |
+
# Open, read in information
|
| 250 |
+
df = pd.read_csv(filename, header = 0)
|
| 251 |
+
df = df.drop(columns = ['hex'])
|
| 252 |
+
|
| 253 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
| 254 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 255 |
+
# substrings and convert them back into floats
|
| 256 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 257 |
+
|
| 258 |
+
# Verify size
|
| 259 |
+
print("Verifying data read from file is the correct length...\n")
|
| 260 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 261 |
+
|
| 262 |
+
# Turn into dictionary
|
| 263 |
+
sample_color_dict = df.set_index('Sample_ID')['rgb']
|
| 264 |
+
|
| 265 |
+
# Print information
|
| 266 |
+
print('sample_color_dict =\n',sample_color_dict)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# ### III.3.6. CHANNELS COLORS
|
| 270 |
+
|
| 271 |
+
# In[13]:
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
filename = "channel_color_data.csv"
|
| 275 |
+
filename = os.path.join(metadata_dir, filename)
|
| 276 |
+
|
| 277 |
+
# Check file exists
|
| 278 |
+
if not os.path.exists(filename):
|
| 279 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 280 |
+
else :
|
| 281 |
+
print("The",filename,"file was imported for further analysis!")
|
| 282 |
+
|
| 283 |
+
# Open, read in information
|
| 284 |
+
df = pd.read_csv(filename, header = 0)
|
| 285 |
+
df = df.drop(columns = ['hex'])
|
| 286 |
+
|
| 287 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
| 288 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 289 |
+
# substrings and convert them back into floats
|
| 290 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 291 |
+
|
| 292 |
+
# Verify size
|
| 293 |
+
print("Verifying data read from file is the correct length...\n")
|
| 294 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 295 |
+
|
| 296 |
+
# Turn into dictionary
|
| 297 |
+
channel_color_dict = df.set_index('Channel')['rgb']
|
| 298 |
+
|
| 299 |
+
# Print information
|
| 300 |
+
print('channel_color_dict =\n',channel_color_dict)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
# ### III.3.7. ROUNDS COLORS
|
| 304 |
+
|
| 305 |
+
# In[14]:
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# ROUND
|
| 309 |
+
filename = "round_color_data.csv"
|
| 310 |
+
filename = os.path.join(metadata_dir, filename)
|
| 311 |
+
|
| 312 |
+
# Check file exists
|
| 313 |
+
if not os.path.exists(filename):
|
| 314 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 315 |
+
else :
|
| 316 |
+
print("The",filename,"file was imported for further analysis!")
|
| 317 |
+
|
| 318 |
+
# Open, read in information
|
| 319 |
+
df = pd.read_csv(filename, header = 0)
|
| 320 |
+
df = df.drop(columns = ['hex'])
|
| 321 |
+
|
| 322 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
| 323 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 324 |
+
# substrings and convert them back into floats
|
| 325 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 326 |
+
|
| 327 |
+
# Verify size
|
| 328 |
+
print("Verifying data read from file is the correct length...\n")
|
| 329 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 330 |
+
|
| 331 |
+
# Turn into dictionary
|
| 332 |
+
round_color_dict = df.set_index('Round')['rgb']
|
| 333 |
+
|
| 334 |
+
# Print information
|
| 335 |
+
print('round_color_dict =\n',round_color_dict)
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
# ### III.3.8. CELL TYPES COLORS
|
| 339 |
+
|
| 340 |
+
# In[15]:
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
data = pd.read_csv('/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/test_metadata/celltype_color_data.csv')
|
| 344 |
+
data
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
# In[16]:
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
filename = "celltype_color_data.csv"
|
| 351 |
+
filename = os.path.join(metadata_dir, filename)
|
| 352 |
+
|
| 353 |
+
# Check file exists
|
| 354 |
+
if not os.path.exists(filename):
|
| 355 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 356 |
+
else :
|
| 357 |
+
print("The",filename,"file was imported for further analysis!")
|
| 358 |
+
|
| 359 |
+
# Open, read in information
|
| 360 |
+
df = pd.read_csv(filename, header = 0)
|
| 361 |
+
#df = df.drop(columns = ['hex'])
|
| 362 |
+
|
| 363 |
+
# Assuming the RGB values are already in separate columns 'R', 'G', 'B'
|
| 364 |
+
if all(col in df.columns for col in ['R', 'G', 'B']):
|
| 365 |
+
# Create the 'rgb' column as tuples of floats
|
| 366 |
+
df['rgb'] = list(zip(df['R'], df['G'], df['B']))
|
| 367 |
+
|
| 368 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
| 369 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 370 |
+
# substrings and convert them back into floats
|
| 371 |
+
#df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 372 |
+
|
| 373 |
+
# Verify size
|
| 374 |
+
print("Verifying data read from file is the correct length...\n")
|
| 375 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 376 |
+
|
| 377 |
+
# Turn into dictionary
|
| 378 |
+
cell_type_color_dict = df.set_index('cell_type')['rgb']
|
| 379 |
+
|
| 380 |
+
# Print information
|
| 381 |
+
print('cell_type_color_dict =\n',cell_type_color_dict)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
# ### III.3.9. CELL SUBTYPES COLORS
|
| 385 |
+
|
| 386 |
+
# In[17]:
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
df = pd.read_csv(filename)
|
| 390 |
+
df.head()
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# In[18]:
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
filename = "cellsubtype_color_data.csv"
|
| 397 |
+
filename = os.path.join(metadata_dir, filename)
|
| 398 |
+
|
| 399 |
+
# Check file exists
|
| 400 |
+
if not os.path.exists(filename):
|
| 401 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 402 |
+
else :
|
| 403 |
+
print("The",filename,"file was imported for further analysis!")
|
| 404 |
+
|
| 405 |
+
# Open, read in information
|
| 406 |
+
df = pd.read_csv(filename, header = 0)
|
| 407 |
+
df = df.drop(columns = ['hex'])
|
| 408 |
+
|
| 409 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
| 410 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 411 |
+
# substrings and convert them back into floats
|
| 412 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 413 |
+
|
| 414 |
+
# Verify size
|
| 415 |
+
print("Verifying data read from file is the correct length...\n")
|
| 416 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 417 |
+
|
| 418 |
+
# Turn into dictionary
|
| 419 |
+
cell_subtype_color_dict = df.set_index('cell_subtype')['rgb'].to_dict()
|
| 420 |
+
|
| 421 |
+
# Print information
|
| 422 |
+
print('cell_subtype_color_dict =\n',cell_subtype_color_dict)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# In[19]:
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
df = pd.read_csv(filename)
|
| 429 |
+
df.head()
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
# ### III.3.10. IMMUNE CHECKPOINT COLORS
|
| 433 |
+
|
| 434 |
+
# In[20]:
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
metadata_dir = "/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/test_metadata"
|
| 438 |
+
filename = "immunecheckpoint_color_data.csv"
|
| 439 |
+
filename = os.path.join(metadata_dir, filename)
|
| 440 |
+
|
| 441 |
+
# Check file exists
|
| 442 |
+
if not os.path.exists(filename):
|
| 443 |
+
print("WARNING: Could not find desired file: "+filename)
|
| 444 |
+
else:
|
| 445 |
+
print("The", filename, "file was imported for further analysis!")
|
| 446 |
+
|
| 447 |
+
# Open, read in information
|
| 448 |
+
df = pd.read_csv(filename, header=0)
|
| 449 |
+
df = df.drop(columns=['hex'])
|
| 450 |
+
|
| 451 |
+
# Convert the 'rgb' column from string to tuple
|
| 452 |
+
df['rgb'] = df['rgb'].apply(rgb_tuple_from_str)
|
| 453 |
+
|
| 454 |
+
# Verify size
|
| 455 |
+
print("Verifying data read from file is the correct length...\n")
|
| 456 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
| 457 |
+
|
| 458 |
+
# Turn into dictionary
|
| 459 |
+
immune_checkpoint_color_dict = df.set_index('immune_checkpoint')['rgb'].to_dict()
|
| 460 |
+
|
| 461 |
+
# Print information
|
| 462 |
+
print('immune_checkpoint_color_dict =\n', immune_checkpoint_color_dict)
|
| 463 |
+
immune_checkpoint_color_df = pd.DataFrame(immune_checkpoint_color_dict)
|
| 464 |
+
immune_checkpoint_color_df
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
# ### III.3.10. DATA
|
| 468 |
+
|
| 469 |
+
# In[21]:
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
# DATA
|
| 473 |
+
# List files in the directory
|
| 474 |
+
# Check if the directory exists
|
| 475 |
+
if os.path.exists(input_data_dir):
|
| 476 |
+
# List files in the directory
|
| 477 |
+
ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith("_bs.csv")]
|
| 478 |
+
print("The following CSV files were detected:")
|
| 479 |
+
print([sample for sample in ls_samples])
|
| 480 |
+
else:
|
| 481 |
+
print(f"The directory {input_data_dir} does not exist.")
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
# In[22]:
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
# Import all the others files
|
| 488 |
+
dfs = {}
|
| 489 |
+
|
| 490 |
+
# Set variable to hold default header values
|
| 491 |
+
# First gather information on expected headers using first file in ls_samples
|
| 492 |
+
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
|
| 493 |
+
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
|
| 494 |
+
expected_headers = df.columns.values
|
| 495 |
+
#print(expected_headers)
|
| 496 |
+
|
| 497 |
+
###############################
|
| 498 |
+
# !! This may take a while !! #
|
| 499 |
+
###############################
|
| 500 |
+
for sample in ls_samples:
|
| 501 |
+
file_path = os.path.join(input_data_dir,sample)
|
| 502 |
+
print(file_path)
|
| 503 |
+
try:
|
| 504 |
+
# Read the CSV file
|
| 505 |
+
df = pd.read_csv(file_path, index_col=0)
|
| 506 |
+
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
|
| 507 |
+
|
| 508 |
+
if not df.empty:
|
| 509 |
+
# Reorder the columns to match the expected headers list
|
| 510 |
+
df = df.reindex(columns=expected_headers)
|
| 511 |
+
print(sample, "file is processed !\n")
|
| 512 |
+
#print(df)
|
| 513 |
+
|
| 514 |
+
except pd.errors.EmptyDataError:
|
| 515 |
+
print(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
| 516 |
+
ls_samples.remove(sample)
|
| 517 |
+
|
| 518 |
+
# Add df to dfs
|
| 519 |
+
dfs[sample] = df
|
| 520 |
+
|
| 521 |
+
#print(dfs)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
# In[23]:
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
# Merge dfs into one df
|
| 528 |
+
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
|
| 529 |
+
del dfs
|
| 530 |
+
merged_df = df
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
# In[24]:
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
merged_df
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
# In[25]:
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
merged_df_shape = df.shape
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
# In[26]:
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
merged_df_index =df.index
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
# In[27]:
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
merged_df_col_values = df.columns.values
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
# In[28]:
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
# Check for NaN entries (should not be any unless columns do not align)
|
| 561 |
+
# False means no NaN entries
|
| 562 |
+
# True means NaN entries
|
| 563 |
+
merged_df_null_values = df.isnull().any().any()
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
# In[29]:
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
df.isnull().any().any()
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
# ## III.4. MARKERS
|
| 573 |
+
|
| 574 |
+
# In[30]:
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
# Listing all the markers of interest for downstream analyses
|
| 578 |
+
# !!TODO WITH MARILYNE!!
|
| 579 |
+
markers = [
|
| 580 |
+
'53BP1_Nucleus_Intensity_Average',
|
| 581 |
+
'AR_Nucleus_Intensity_Average',
|
| 582 |
+
'CCNB1_Cell_Intensity_Average',
|
| 583 |
+
'CCND1_Nucleus_Intensity_Average',
|
| 584 |
+
'CCNE_Nucleus_Intensity_Average',
|
| 585 |
+
'CD31_Cytoplasm_Intensity_Average',
|
| 586 |
+
'CKs_Cytoplasm_Intensity_Average',
|
| 587 |
+
'ERa_Nucleus_Intensity_Average',
|
| 588 |
+
'Ecad_Cytoplasm_Intensity_Average',
|
| 589 |
+
'GATA3_Nucleus_Intensity_Average',
|
| 590 |
+
'H3K27_Nucleus_Intensity_Average',
|
| 591 |
+
'H3K4me3_Nucleus_Intensity_Average',
|
| 592 |
+
'HER2_Cytoplasm_Intensity_Average',
|
| 593 |
+
'HSP90_Cell_Intensity_Average',
|
| 594 |
+
'Ki67_Nucleus_Intensity_Average',
|
| 595 |
+
'PAX8_Nucleus_Intensity_Average',
|
| 596 |
+
'PCNA_Nucleus_Intensity_Average',
|
| 597 |
+
'PRg_Nucleus_Intensity_Average',
|
| 598 |
+
'S100b_Cytoplasm_Intensity_Average',
|
| 599 |
+
'TP53_Cell_Intensity_Average',
|
| 600 |
+
'Vimentin_Cytoplasm_Intensity_Average',
|
| 601 |
+
'pAKT_Cytoplasm_Intensity_Average',
|
| 602 |
+
'pATM_Nucleus_Intensity_Average',
|
| 603 |
+
'pATR_Nucleus_Intensity_Average',
|
| 604 |
+
'pERK_Cell_Intensity_Average',
|
| 605 |
+
'pRB_Nucleus_Intensity_Average',
|
| 606 |
+
'pS6_Cytoplasm_Intensity_Average',
|
| 607 |
+
'AXL_Cytoplasm_Intensity_Average',
|
| 608 |
+
'B7H4_Cell_Intensity_Average',
|
| 609 |
+
'CD11c_Cytoplasm_Intensity_Average',
|
| 610 |
+
'CD163_Cytoplasm_Intensity_Average',
|
| 611 |
+
'CD20_Cytoplasm_Intensity_Average',
|
| 612 |
+
'CD31_Cytoplasm_Intensity_Average',
|
| 613 |
+
'CD44_Cytoplasm_Intensity_Average',
|
| 614 |
+
'CD45_Cytoplasm_Intensity_Average',
|
| 615 |
+
'CD45b_Cytoplasm_Intensity_Average',
|
| 616 |
+
'CD4_Cytoplasm_Intensity_Average',
|
| 617 |
+
'CD68_Cytoplasm_Intensity_Average',
|
| 618 |
+
'CD8_Cytoplasm_Intensity_Average',
|
| 619 |
+
'CKs_Cytoplasm_Intensity_Average',
|
| 620 |
+
'ColVI_Cytoplasm_Intensity_Average',
|
| 621 |
+
'Desmin_Cytoplasm_Intensity_Average',
|
| 622 |
+
'Ecad_Cytoplasm_Intensity_Average',
|
| 623 |
+
'FOXP3_Nucleus_Intensity_Average',
|
| 624 |
+
'Fibronectin_Cytoplasm_Intensity_Average',
|
| 625 |
+
'GATA3_Nucleus_Intensity_Average',
|
| 626 |
+
'HLA_Cytoplasm_Intensity_Average',
|
| 627 |
+
'Ki67_Nucleus_Intensity_Average',
|
| 628 |
+
'MMP9_Cytoplasm_Intensity_Average',
|
| 629 |
+
'PD1_Cytoplasm_Intensity_Average',
|
| 630 |
+
'PDGFR_Cytoplasm_Intensity_Average',
|
| 631 |
+
'PDL1_Cytoplasm_Intensity_Average',
|
| 632 |
+
'Sting_Cytoplasm_Intensity_Average',
|
| 633 |
+
'Vimentin_Cytoplasm_Intensity_Average',
|
| 634 |
+
'aSMA_Cytoplasm_Intensity_Average'
|
| 635 |
+
]
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
# In[31]:
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
# Check if all columns in the markers list are present in the DataFrame
|
| 642 |
+
missing_columns = [col for col in markers if col not in df.columns]
|
| 643 |
+
if missing_columns:
|
| 644 |
+
# If columns are missing that can be because the markers may be present in the other slide
|
| 645 |
+
print(f"The following columns are not present in the DataFrame ({len(missing_columns)} columns missing): \n{missing_columns}\n")
|
| 646 |
+
# Filter the DataFrame to keep only the columns that are in the markers list and also exist in the DataFrame
|
| 647 |
+
intersected_columns = list(set(markers).intersection(df.columns))
|
| 648 |
+
df_markers = df[intersected_columns]
|
| 649 |
+
else:
|
| 650 |
+
# Filter the DataFrame to keep only the columns in the markers list
|
| 651 |
+
df_markers = df[markers]
|
| 652 |
+
|
| 653 |
+
initial_df_marker = df_markers
|
| 654 |
+
df_markers.head()
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
# In[32]:
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
# Rename CD45b into CD45 (Slide A!)
|
| 661 |
+
if project_name == 'Slide_A' :
|
| 662 |
+
df_markers.rename(columns={"CD45b_Cytoplasm_Intensity_Average": "CD45_Cytoplasm_Intensity_Average"}, inplace=True)
|
| 663 |
+
df_markers.columns.values
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
# In[33]:
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
df_markers.shape
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
# In[34]:
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
min_values = df_markers.min().tolist()
|
| 676 |
+
min_values
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
# In[35]:
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
# Keep not_intensities and markers columns
|
| 683 |
+
# Combine both lists
|
| 684 |
+
combined_columns = list(set(markers) | set(not_intensities))
|
| 685 |
+
|
| 686 |
+
# Filter the DataFrame to keep only the combined columns present in both df and combined_columns
|
| 687 |
+
df_markers_not_intensities = df[df.columns.intersection(combined_columns)]
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
# In[36]:
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
df_markers_not_intensities
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
# In[37]:
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
df_markers_not_intensities.shape
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
# ## III.5. NORMALISATION
|
| 703 |
+
|
| 704 |
+
# In[38]:
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
df_markers.min().tolist()
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
# In[39]:
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
'''# LOG2 TRANFORMATION
|
| 714 |
+
#Values need to be higher than 0 for Log2 transformation.
|
| 715 |
+
print("df_marker.shape before normalisation: ", df_markers.shape)
|
| 716 |
+
df_marker_shape_before_norm = df_markers.shape
|
| 717 |
+
|
| 718 |
+
# Option 1
|
| 719 |
+
# This step might not be the best approach because in creates pattern in the data.
|
| 720 |
+
# set anything that is below 0 to 0, so that we can do the log transform, +1 to all columns
|
| 721 |
+
#for f in df_markers.columns[~df_markers.columns.isin(not_intensities)]:
|
| 722 |
+
#df_markers.loc[df_markers[f] < 0,f] = 0
|
| 723 |
+
#option2
|
| 724 |
+
# Add the min from min values (from above) +1 to all columns
|
| 725 |
+
#df_markers.loc[:, ~df_markers.columns.isin(not_intensities)] = \
|
| 726 |
+
#df_markers.loc[:,~df_markers.columns.isin(not_intensities)].copy() + 1
|
| 727 |
+
# Add the minimum value + 1 to each column
|
| 728 |
+
# OR'''
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
# In[40]:
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
min_value = df_markers.min().min()
|
| 735 |
+
print("min value = ", min_value)
|
| 736 |
+
df_markers = df_markers + (np.abs(min_value))
|
| 737 |
+
|
| 738 |
+
# +1
|
| 739 |
+
df_markers = df_markers + 1
|
| 740 |
+
df_after_norm = df_markers
|
| 741 |
+
df_marker_shape_after_norm = df_markers.shape
|
| 742 |
+
print("df_markers.shape after normalisation: ", df_markers.shape)
|
| 743 |
+
df_markers.min().tolist()
|
| 744 |
+
|
| 745 |
+
# Apply log2
|
| 746 |
+
df_markers.loc[:,~df_markers.columns.isin(not_intensities)] = \
|
| 747 |
+
np.log2(df_markers.loc[:, ~df_markers.columns.isin(not_intensities)])
|
| 748 |
+
print('log2 transform finished')
|
| 749 |
+
|
| 750 |
+
df_markers
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
# In[75]:
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
#main
|
| 757 |
+
pn.extension()
|
| 758 |
+
|
| 759 |
+
not_intensities = [] # Add columns to exclude from transformation if any
|
| 760 |
+
|
| 761 |
+
# Define transformation functions
|
| 762 |
+
def modify(df):
|
| 763 |
+
min_value = df.min().min()
|
| 764 |
+
df = df + (np.abs(min_value))
|
| 765 |
+
df = df + 1
|
| 766 |
+
df.loc[:, ~df.columns.isin(not_intensities)] = np.log2(df.loc[:, ~df.columns.isin(not_intensities)])
|
| 767 |
+
return df
|
| 768 |
+
|
| 769 |
+
def shift(df):
|
| 770 |
+
df.loc[:, ~df.columns.isin(not_intensities)] = np.log2(df.loc[:, ~df.columns.isin(not_intensities)])
|
| 771 |
+
return df
|
| 772 |
+
|
| 773 |
+
# Define the panel widgets
|
| 774 |
+
operation = pn.widgets.RadioButtonGroup(name='Operation', options=['Modify', 'Shift'], button_type='success')
|
| 775 |
+
|
| 776 |
+
# Define a function to update the DataFrame based on the selected operation
|
| 777 |
+
def update_dataframe(operation):
|
| 778 |
+
df = df_markers.copy()
|
| 779 |
+
if operation == 'Modify':
|
| 780 |
+
modified_df = modify(df)
|
| 781 |
+
elif operation == 'Shift':
|
| 782 |
+
modified_df = shift(df)
|
| 783 |
+
return modified_df.head()
|
| 784 |
+
|
| 785 |
+
# Create a panel layout
|
| 786 |
+
layout = pn.Column(
|
| 787 |
+
pn.pane.Markdown("### Data Transformation"),
|
| 788 |
+
operation,
|
| 789 |
+
pn.pane.Markdown("### Transformed DataFrame"),
|
| 790 |
+
pn.bind(lambda op: update_dataframe(op), operation)
|
| 791 |
+
)
|
| 792 |
+
|
| 793 |
+
#df_after_norm
|
| 794 |
+
|
| 795 |
+
df_markers.columns.tolist()
|
| 796 |
+
|
| 797 |
+
# Check for NaN entries (should not be any unless columns do not align)
|
| 798 |
+
# False means no NaN entries
|
| 799 |
+
# True means NaN entries
|
| 800 |
+
df_markers.isnull().any().any()
|
| 801 |
+
|
| 802 |
+
count_nan_in_df_markers = df_markers.isnull().sum().sum()
|
| 803 |
+
print(count_nan_in_df_markers)
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
# ## III.6. Z-SCORE TRANSFORMATION
|
| 807 |
+
|
| 808 |
+
# In[49]:
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
# Filter the DataFrame df to keep only the columns specified in the not_intensities list
|
| 812 |
+
#df = df.loc[:, not_intensities]
|
| 813 |
+
#df
|
| 814 |
+
|
| 815 |
+
# Check if all columns in the markers list are present in the DataFrame
|
| 816 |
+
missing_columns = [col for col in not_intensities if col not in df.columns]
|
| 817 |
+
if missing_columns:
|
| 818 |
+
print(f"The following columns are not present in the DataFrame ({len(missing_columns)} columns missing): \
|
| 819 |
+
\n{missing_columns}")
|
| 820 |
+
# Filter the DataFrame to keep only the columns that are in the markers list and also exist in the DataFrame
|
| 821 |
+
intersected_columns = list(set(not_intensities).intersection(df.columns))
|
| 822 |
+
df = df[intersected_columns]
|
| 823 |
+
else:
|
| 824 |
+
# Filter the DataFrame to keep only the columns in the markers list
|
| 825 |
+
df.loc[:, not_intensities]
|
| 826 |
+
|
| 827 |
+
df
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
# In[50]:
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
df
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
# In[51]:
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
df_merged = df_markers.merge(df, left_index=True, right_on='ID', how='left')
|
| 840 |
+
df_merged
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
# In[52]:
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
df_merged.columns.tolist()
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
# In[53]:
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
# Create a copy, just in case you need to restart the kernel
|
| 853 |
+
df_merged_copy = df_merged
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
# In[54]:
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
# Filters the rows of the DataFrame df_merged based on the values in the 'Sample_ID' column
|
| 860 |
+
# df_subset will contain a subset of rows from df_merged where the 'Sample_ID' matches the values in the list 'keep' ('TMA.csv' in this case)
|
| 861 |
+
keep = ['TMA.csv']
|
| 862 |
+
df_subset = df_merged.loc[df_merged['Sample_ID'].isin(keep),:].copy()
|
| 863 |
+
df_subset
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
# In[55]:
|
| 867 |
+
|
| 868 |
+
# Convert the DataFrame to numeric, forcing errors to NaN
|
| 869 |
+
df_numeric = df_subset.apply(pd.to_numeric, errors='coerce')
|
| 870 |
+
# Z-score normalization
|
| 871 |
+
# Z-score the rows (apply() with axis = 1, only perform on intensity data)
|
| 872 |
+
# Apply Z-score normalization only on numeric columns
|
| 873 |
+
df_subset.loc[:, ~df_subset.columns.isin(not_intensities)] = \
|
| 874 |
+
df_numeric.loc[:, ~df_numeric.columns.isin(not_intensities)].apply(
|
| 875 |
+
lambda row: (row - row.median()) / row.std(ddof=0), axis=1)
|
| 876 |
+
# Drop columns with all NaN values (if any)
|
| 877 |
+
df_subset.dropna(how='all', inplace=True, axis=1)
|
| 878 |
+
|
| 879 |
+
print('zscore rows finished')
|
| 880 |
+
###############################
|
| 881 |
+
# !! This may take a while !! #
|
| 882 |
+
###############################
|
| 883 |
+
'''df_subset.loc[:,~df_subset.columns.isin(not_intensities)] = \
|
| 884 |
+
df_subset.loc[:,~df_subset.columns.isin(not_intensities)].apply(
|
| 885 |
+
lambda row: (row - row.median())/(row.std(ddof=0)), axis = 1)
|
| 886 |
+
df_subset.dropna(how = 'all', inplace = True, axis = 1)
|
| 887 |
+
print('zscore rows finished')'''
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
# In[56]:
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
df_subset
|
| 894 |
+
df_numeric = df_merged.apply(pd.to_numeric, errors='coerce')
|
| 895 |
+
# Z-score the rows (apply() with axis = 1, only perform on intensity data)
|
| 896 |
+
|
| 897 |
+
###############################
|
| 898 |
+
# !! This may take a while !! #
|
| 899 |
+
###############################
|
| 900 |
+
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
|
| 901 |
+
df_numeric.loc[:,~df_numeric.columns.isin(not_intensities)].apply(
|
| 902 |
+
lambda row: (row - row.median())/(row.std(ddof=0)), axis = 1)
|
| 903 |
+
df_merged.dropna(how = 'all', inplace = True, axis = 1)
|
| 904 |
+
print('zscore rows finished')
|
| 905 |
+
|
| 906 |
+
'''# Z-score the rows (apply() with axis = 1, only perform on intensity data)
|
| 907 |
+
|
| 908 |
+
###############################
|
| 909 |
+
# !! This may take a while !! #
|
| 910 |
+
###############################
|
| 911 |
+
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
|
| 912 |
+
df_merged.loc[:,~df_merged.columns.isin(not_intensities)].apply(
|
| 913 |
+
lambda row: (row - row.median())/(row.std(ddof=0)), axis = 1)
|
| 914 |
+
df_merged.dropna(how = 'all', inplace = True, axis = 1)
|
| 915 |
+
print('zscore rows finished')'''
|
| 916 |
+
|
| 917 |
+
|
| 918 |
+
df_merged
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
# In[59]:
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
# Ensuring that the selected columns in df have been adjusted or normalized using the median values
|
| 925 |
+
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
|
| 926 |
+
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] - df_subset.loc[:,~df_subset.columns.isin(not_intensities)].median()
|
| 927 |
+
df_merged
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
# In[60]:
|
| 931 |
+
|
| 932 |
+
|
| 933 |
+
df_merged_zscore = df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
|
| 934 |
+
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] / df_subset.loc[:,~df_subset.columns.isin(not_intensities)].std(ddof=0)
|
| 935 |
+
df_merged_zscore
|
| 936 |
+
|
| 937 |
+
|
| 938 |
+
# In[61]:
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
# Check for NaN entries (should not be any unless columns do not align)
|
| 942 |
+
# False means no NaN entries
|
| 943 |
+
# True means NaN entries
|
| 944 |
+
df.isnull().any().any()
|
| 945 |
+
|
| 946 |
+
|
| 947 |
+
# In[62]:
|
| 948 |
+
|
| 949 |
+
|
| 950 |
+
quality_control_df = df_merged_zscore
|
| 951 |
+
|
| 952 |
+
|
| 953 |
+
# In[63]:
|
| 954 |
+
|
| 955 |
+
|
| 956 |
+
def check_index_format(index_str, ls_samples):
|
| 957 |
+
"""
|
| 958 |
+
Checks if the given index string follows the specified format.
|
| 959 |
+
|
| 960 |
+
Args:
|
| 961 |
+
index_str (str): The index string to be checked.
|
| 962 |
+
ls_samples (list): A list of valid sample names.
|
| 963 |
+
|
| 964 |
+
Returns:
|
| 965 |
+
bool: True if the index string follows the format, False otherwise.
|
| 966 |
+
"""
|
| 967 |
+
# Split the index string into parts
|
| 968 |
+
parts = index_str.split('_')
|
| 969 |
+
|
| 970 |
+
# Check if there are exactly 3 parts
|
| 971 |
+
if len(parts) != 3:
|
| 972 |
+
print(len(parts))
|
| 973 |
+
return False
|
| 974 |
+
|
| 975 |
+
# Check if the first part is in ls_samples
|
| 976 |
+
sample_name = parts[0]
|
| 977 |
+
if f'{sample_name}_bs.csv' not in ls_samples:
|
| 978 |
+
print(sample_name)
|
| 979 |
+
return False
|
| 980 |
+
|
| 981 |
+
# Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
|
| 982 |
+
location = parts[1]
|
| 983 |
+
valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
|
| 984 |
+
if location not in valid_locations:
|
| 985 |
+
print(location)
|
| 986 |
+
return False
|
| 987 |
+
|
| 988 |
+
# Check if the third part is a number
|
| 989 |
+
try:
|
| 990 |
+
index = int(parts[2])
|
| 991 |
+
except ValueError:
|
| 992 |
+
print(index)
|
| 993 |
+
return False
|
| 994 |
+
|
| 995 |
+
# If all checks pass, return True
|
| 996 |
+
return True
|
| 997 |
+
# Let's take a look at a few features to make sure our dataframe is as expected
|
| 998 |
+
def check_format_ofindex(index):
|
| 999 |
+
for index in df.index:
|
| 1000 |
+
check_index = check_index_format(index, ls_samples)
|
| 1001 |
+
if check_index is False:
|
| 1002 |
+
index_format = "Bad"
|
| 1003 |
+
return index_format
|
| 1004 |
+
|
| 1005 |
+
index_format = "Good"
|
| 1006 |
+
return index_format
|
| 1007 |
+
|
| 1008 |
+
|
| 1009 |
+
# In[64]:
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
import panel as pn
|
| 1013 |
+
import pandas as pd
|
| 1014 |
+
|
| 1015 |
+
def quality_check(file, not_intensities):
|
| 1016 |
+
# Load the output file
|
| 1017 |
+
df = file
|
| 1018 |
+
|
| 1019 |
+
# Check Index
|
| 1020 |
+
check_index = check_format_ofindex(df.index)
|
| 1021 |
+
|
| 1022 |
+
# Check Shape
|
| 1023 |
+
check_shape = df.shape
|
| 1024 |
+
|
| 1025 |
+
# Check for NaN entries
|
| 1026 |
+
check_no_null = df.isnull().any().any()
|
| 1027 |
+
|
| 1028 |
+
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
| 1029 |
+
if (mean_intensity == 0).any():
|
| 1030 |
+
df = df.loc[mean_intensity > 0, :]
|
| 1031 |
+
print("df.shape after removing 0 mean values: ", df.shape)
|
| 1032 |
+
check_zero_intensities = f'Shape after removing 0 mean values: {df.shape}'
|
| 1033 |
+
else:
|
| 1034 |
+
print("No zero intensity values.")
|
| 1035 |
+
check_zero_intensities = "No zero intensity values."
|
| 1036 |
+
|
| 1037 |
+
# Create a quality check results table
|
| 1038 |
+
quality_check_results_table = pd.DataFrame({
|
| 1039 |
+
'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
|
| 1040 |
+
'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
|
| 1041 |
+
})
|
| 1042 |
+
|
| 1043 |
+
# Create a quality check results component
|
| 1044 |
+
quality_check_results_component = pn.Card(
|
| 1045 |
+
pn.pane.DataFrame(quality_check_results_table),
|
| 1046 |
+
title="Quality Control Results",
|
| 1047 |
+
header_background="#2196f3",
|
| 1048 |
+
header_color="white",
|
| 1049 |
+
)
|
| 1050 |
+
|
| 1051 |
+
return quality_check_results_component
|
| 1052 |
+
|
| 1053 |
+
|
| 1054 |
+
# In[76]:
|
| 1055 |
+
|
| 1056 |
+
|
| 1057 |
+
import panel as pn
|
| 1058 |
+
|
| 1059 |
+
# Assuming your DataFrames are already defined as:
|
| 1060 |
+
# metadata, merged_df, initial_df_marker, df_markers_not_intensities, df_after_norm,
|
| 1061 |
+
# df_markers, df_subset, df_merged_zscore
|
| 1062 |
+
|
| 1063 |
+
# Create widgets and panes
|
| 1064 |
+
df_widget = pn.widgets.DataFrame(metadata, name="MetaData")
|
| 1065 |
+
|
| 1066 |
+
# Define the three tabs content
|
| 1067 |
+
|
| 1068 |
+
metadata_tab = pn.Column(
|
| 1069 |
+
pn.pane.Markdown("### Sample Metadata"),
|
| 1070 |
+
pn.pane.DataFrame(metadata.head()),
|
| 1071 |
+
pn.pane.Markdown("### Intial Dataframe"),
|
| 1072 |
+
pn.pane.DataFrame(initial_df_marker.head(), width = 1500),
|
| 1073 |
+
pn.Row(pn.pane.Markdown("### Shape: "), pn.pane.Markdown(str(merged_df.shape))),
|
| 1074 |
+
pn.pane.Markdown("### Merged Dataframe"),
|
| 1075 |
+
pn.pane.DataFrame(merged_df.head(), width = 1500),
|
| 1076 |
+
pn.Row(pn.pane.Markdown("### Shape: "), pn.pane.Markdown(str(initial_df_marker.shape))),
|
| 1077 |
+
pn.pane.Markdown("### Markers and not intensities Dataframe"),
|
| 1078 |
+
pn.pane.DataFrame(df_markers_not_intensities.head(), width = 1500),
|
| 1079 |
+
pn.Row(pn.pane.Markdown("### Shape: "),
|
| 1080 |
+
pn.pane.Markdown(str(df_markers_not_intensities.shape)))
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
normalization_tab = pn.Column(
|
| 1084 |
+
#pn.pane.Markdown("### Normalisation performed"),
|
| 1085 |
+
#pn.pane.DataFrame(df_after_norm.head()),
|
| 1086 |
+
#pn.Row(pn.pane.Markdown("### Shape before normalization: ")),
|
| 1087 |
+
#pn.pane.Markdown(str(df_marker_shape_before_norm))),
|
| 1088 |
+
#pn.Row(pn.pane.Markdown("### Shape after normalization: ")),
|
| 1089 |
+
#pn.pane.Markdown(str(df_marker_shape_after_norm))),
|
| 1090 |
+
#pn.pane.Markdown("### Performed log 2 transformation"),
|
| 1091 |
+
#pn.pane.DataFrame(df_markers.head())
|
| 1092 |
+
layout
|
| 1093 |
+
)
|
| 1094 |
+
|
| 1095 |
+
zscore_tab = pn.Column(
|
| 1096 |
+
pn.pane.Markdown("### Performed Z-score transformation"),
|
| 1097 |
+
pn.pane.DataFrame(df_subset.head(), width = 1500),
|
| 1098 |
+
pn.pane.Markdown("### Z-score transformation finished"),
|
| 1099 |
+
pn.pane.DataFrame(df_merged_zscore.head(), width = 1500)
|
| 1100 |
+
)
|
| 1101 |
+
|
| 1102 |
+
quality_control_tab = pn.Column(
|
| 1103 |
+
pn.pane.Markdown("### Quality Control"),
|
| 1104 |
+
quality_check(quality_control_df, not_intensities)
|
| 1105 |
+
)
|
| 1106 |
+
|
| 1107 |
+
# Create the GoldenTemplate
|
| 1108 |
+
app3 = pn.template.GoldenTemplate(
|
| 1109 |
+
site="Cyc-IF",
|
| 1110 |
+
title="Z-Score Computation",
|
| 1111 |
+
main=[
|
| 1112 |
+
pn.Tabs(
|
| 1113 |
+
("Metadata", metadata_tab),
|
| 1114 |
+
("Normalization", normalization_tab),
|
| 1115 |
+
("Z-Score", zscore_tab),
|
| 1116 |
+
("Quality Control", quality_control_tab)
|
| 1117 |
+
)
|
| 1118 |
+
]
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
app3.servable()
|
| 1122 |
+
|
| 1123 |
+
if __name__ == "__main__":
|
| 1124 |
+
pn.serve(app3, port=5007)
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
|
| 1128 |
+
|