Spaces:
Sleeping
Sleeping
Delete Background_Substraction.py
Browse files- Background_Substraction.py +0 -1130
Background_Substraction.py
DELETED
|
@@ -1,1130 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
# coding: utf-8
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
# In[1]:
|
| 6 |
-
import os
|
| 7 |
-
import random
|
| 8 |
-
import re
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import numpy as np
|
| 11 |
-
import seaborn as sb
|
| 12 |
-
import matplotlib.pyplot as plt
|
| 13 |
-
import matplotlib.colors as mplc
|
| 14 |
-
import subprocess
|
| 15 |
-
import warnings
|
| 16 |
-
from scipy import signal
|
| 17 |
-
import plotly.figure_factory as ff
|
| 18 |
-
import plotly
|
| 19 |
-
import plotly.graph_objs as go
|
| 20 |
-
from plotly.offline import download_plotlyjs, plot
|
| 21 |
-
import plotly.express as px
|
| 22 |
-
from my_modules import *
|
| 23 |
-
os.getcwd()
|
| 24 |
-
# In[2]:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#Silence FutureWarnings & UserWarnings
|
| 28 |
-
warnings.filterwarnings('ignore', category= FutureWarning)
|
| 29 |
-
warnings.filterwarnings('ignore', category= UserWarning)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# ## II.2. *DIRECTORIES
|
| 33 |
-
|
| 34 |
-
# In[5]:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# Set base directory
|
| 38 |
-
|
| 39 |
-
##### MAC WORKSTATION #####
|
| 40 |
-
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
|
| 41 |
-
###########################
|
| 42 |
-
|
| 43 |
-
##### WINDOWS WORKSTATION #####
|
| 44 |
-
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
|
| 45 |
-
###############################
|
| 46 |
-
|
| 47 |
-
##### LOCAL WORKSTATION #####
|
| 48 |
-
#base_dir = r'/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/'
|
| 49 |
-
#############################
|
| 50 |
-
|
| 51 |
-
#set_name = 'Set_A'
|
| 52 |
-
#set_name = 'test'
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
present_dir = os.path.dirname(os.path.realpath(__file__))
|
| 56 |
-
|
| 57 |
-
input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
|
| 58 |
-
base_dir = input_path
|
| 59 |
-
'''
|
| 60 |
-
# Function to change permissions recursively with error handling
|
| 61 |
-
def change_permissions_recursive(path, mode):
|
| 62 |
-
for root, dirs, files in os.walk(path):
|
| 63 |
-
for dir in dirs:
|
| 64 |
-
try:
|
| 65 |
-
os.chmod(os.path.join(root, dir), mode)
|
| 66 |
-
except Exception as e:
|
| 67 |
-
print(f"An error occurred while changing permissions for directory {os.path.join(root, dir)}: {e}")
|
| 68 |
-
for file in files:
|
| 69 |
-
try:
|
| 70 |
-
os.chmod(os.path.join(root, file), mode)
|
| 71 |
-
except Exception as e:
|
| 72 |
-
print(f"An error occurred while changing permissions for file {os.path.join(root, file)}: {e}")
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
change_permissions_recursive(base_dir, 0o777)
|
| 76 |
-
change_permissions_recursive('/code', 0o777)
|
| 77 |
-
'''
|
| 78 |
-
set_path = 'test'
|
| 79 |
-
selected_metadata_files = ['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']
|
| 80 |
-
ls_samples = ['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']
|
| 81 |
-
|
| 82 |
-
set_name = set_path
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# In[7]:
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
project_name = set_name # Project name
|
| 89 |
-
step_suffix = 'bs' # Curent part (here part II)
|
| 90 |
-
previous_step_suffix_long = "_qc_eda" # Previous part (here QC/EDA NOTEBOOK)
|
| 91 |
-
|
| 92 |
-
# Initial input data directory
|
| 93 |
-
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
| 94 |
-
|
| 95 |
-
# BS output directories
|
| 96 |
-
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
|
| 97 |
-
# BS images subdirectory
|
| 98 |
-
output_images_dir = os.path.join(output_data_dir,"images")
|
| 99 |
-
|
| 100 |
-
# Data and Metadata directories
|
| 101 |
-
# Metadata directories
|
| 102 |
-
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
| 103 |
-
# images subdirectory
|
| 104 |
-
metadata_images_dir = os.path.join(metadata_dir,"images")
|
| 105 |
-
|
| 106 |
-
# Create directories if they don't already exist
|
| 107 |
-
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
| 108 |
-
if not os.path.exists(d):
|
| 109 |
-
print("Creation of the" , d, "directory...")
|
| 110 |
-
os.makedirs(d)
|
| 111 |
-
else :
|
| 112 |
-
print("The", d, "directory already exists !")
|
| 113 |
-
|
| 114 |
-
os.chdir(input_data_dir)
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
# In[8]:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# Verify paths
|
| 121 |
-
print('base_dir :', base_dir)
|
| 122 |
-
print('input_data_dir :', input_data_dir)
|
| 123 |
-
print('output_data_dir :', output_data_dir)
|
| 124 |
-
print('output_images_dir :', output_images_dir)
|
| 125 |
-
print('metadata_dir :', metadata_dir)
|
| 126 |
-
print('metadata_images_dir :', metadata_images_dir)
|
| 127 |
-
|
| 128 |
-
# ## II.3. FILES
|
| 129 |
-
#Don't forget to put your data in the projname_data directory !
|
| 130 |
-
# ### II.3.1. METADATA
|
| 131 |
-
|
| 132 |
-
# In[9]:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
# Import all metadata we need from the QC/EDA chapter
|
| 136 |
-
|
| 137 |
-
# METADATA
|
| 138 |
-
filename = "marker_intensity_metadata.csv"
|
| 139 |
-
filename = os.path.join(metadata_dir, filename)
|
| 140 |
-
|
| 141 |
-
# Check file exists
|
| 142 |
-
if not os.path.exists(filename):
|
| 143 |
-
print("WARNING: Could not find desired file: "+filename)
|
| 144 |
-
else :
|
| 145 |
-
print("The",filename,"file was imported for further analysis!")
|
| 146 |
-
|
| 147 |
-
# Open, read in information
|
| 148 |
-
metadata = pd.read_csv(filename)
|
| 149 |
-
|
| 150 |
-
# Verify size with verify_line_no() function in my_modules.py
|
| 151 |
-
#verify_line_no(filename, metadata.shape[0] + 1)
|
| 152 |
-
|
| 153 |
-
# Verify headers
|
| 154 |
-
exp_cols = ['Round','Target','Channel','target_lower','full_column','marker','localisation']
|
| 155 |
-
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
| 156 |
-
|
| 157 |
-
metadata = metadata.dropna()
|
| 158 |
-
metadata.head()
|
| 159 |
-
|
| 160 |
-
# ### II.3.2. NOT_INTENSITIES
|
| 161 |
-
|
| 162 |
-
# In[10]:
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
# NOT_INTENSITIES
|
| 166 |
-
filename = "not_intensities.csv"
|
| 167 |
-
filename = os.path.join(metadata_dir, filename)
|
| 168 |
-
|
| 169 |
-
# Check file exists
|
| 170 |
-
if not os.path.exists(filename):
|
| 171 |
-
print("WARNING: Could not find desired file: "+filename)
|
| 172 |
-
else :
|
| 173 |
-
print("The",filename,"file was imported for further analysis!")
|
| 174 |
-
|
| 175 |
-
# Open, read in information
|
| 176 |
-
#not_intensities = []
|
| 177 |
-
with open(filename, 'r') as fh:
|
| 178 |
-
not_intensities = fh.read().strip().split("\n")
|
| 179 |
-
# take str, strip whitespace, split on new line character
|
| 180 |
-
|
| 181 |
-
not_intensities = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size',
|
| 182 |
-
'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID',
|
| 183 |
-
'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
|
| 184 |
-
|
| 185 |
-
# Verify size
|
| 186 |
-
print("Verifying data read from file is the correct length...\n")
|
| 187 |
-
verify_line_no(filename, len(not_intensities))
|
| 188 |
-
|
| 189 |
-
# Print to console
|
| 190 |
-
print("not_intensities =\n", not_intensities)
|
| 191 |
-
|
| 192 |
-
import os
|
| 193 |
-
import pandas as pd
|
| 194 |
-
|
| 195 |
-
# Function to compare headers (assuming you have this function defined in your my_modules.py)
|
| 196 |
-
def compare_headers(expected, actual, description):
|
| 197 |
-
missing = [col for col in expected if col not in actual]
|
| 198 |
-
if missing:
|
| 199 |
-
print(f"WARNING: Missing expected columns in {description}: {missing}")
|
| 200 |
-
else:
|
| 201 |
-
print(f"All expected columns are present in {description}.")
|
| 202 |
-
|
| 203 |
-
# Get the current script directory
|
| 204 |
-
present_dir = os.path.dirname(os.path.realpath(__file__))
|
| 205 |
-
|
| 206 |
-
# Define the input path
|
| 207 |
-
input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
|
| 208 |
-
base_dir = input_path
|
| 209 |
-
set_path = 'test'
|
| 210 |
-
|
| 211 |
-
# Project and step names
|
| 212 |
-
project_name = set_path # Project name
|
| 213 |
-
previous_step_suffix_long = "_qc_eda" # Previous part (here QC/EDA NOTEBOOK)
|
| 214 |
-
|
| 215 |
-
# Initial input data directory
|
| 216 |
-
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
| 217 |
-
|
| 218 |
-
# Metadata directories
|
| 219 |
-
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
| 220 |
-
metadata_images_dir = os.path.join(metadata_dir, "images")
|
| 221 |
-
|
| 222 |
-
# Define writable directory
|
| 223 |
-
writable_directory = '/tmp'
|
| 224 |
-
|
| 225 |
-
# Check and read metadata file
|
| 226 |
-
filename = "marker_intensity_metadata.csv"
|
| 227 |
-
filename = os.path.join(metadata_dir, filename)
|
| 228 |
-
|
| 229 |
-
# Check if the file exists
|
| 230 |
-
if not os.path.exists(filename):
|
| 231 |
-
print("WARNING: Could not find desired file: " + filename)
|
| 232 |
-
else:
|
| 233 |
-
print("The", filename, "file was imported for further analysis!")
|
| 234 |
-
|
| 235 |
-
# Open, read in information
|
| 236 |
-
metadata = pd.read_csv(filename)
|
| 237 |
-
|
| 238 |
-
# Verify headers
|
| 239 |
-
exp_cols = ['Round', 'Target', 'Channel', 'target_lower', 'full_column', 'marker', 'localisation']
|
| 240 |
-
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
| 241 |
-
|
| 242 |
-
metadata = metadata.dropna()
|
| 243 |
-
print(metadata.head())
|
| 244 |
-
|
| 245 |
-
# Example of writing to the writable directory
|
| 246 |
-
output_file_path = os.path.join(writable_directory, 'processed_metadata.csv')
|
| 247 |
-
try:
|
| 248 |
-
metadata.to_csv(output_file_path, index=False)
|
| 249 |
-
print(f"Processed metadata written successfully to {output_file_path}")
|
| 250 |
-
except PermissionError as e:
|
| 251 |
-
print(f"Permission denied: Unable to write the file at {output_file_path}. Error: {e}")
|
| 252 |
-
except Exception as e:
|
| 253 |
-
print(f"An error occurred: {e}")
|
| 254 |
-
|
| 255 |
-
# ### II.3.3. FULL_TO_SHORT_COLUMN_NAMES
|
| 256 |
-
|
| 257 |
-
# In[11]:
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
# FULL_TO_SHORT_COLUMN_NAMES
|
| 261 |
-
filename = "full_to_short_column_names.csv"
|
| 262 |
-
filename = os.path.join(metadata_dir, filename)
|
| 263 |
-
|
| 264 |
-
# Check file exists
|
| 265 |
-
if not os.path.exists(filename):
|
| 266 |
-
print("WARNING: Could not find desired file: " + filename)
|
| 267 |
-
else :
|
| 268 |
-
print("The",filename,"file was imported for further analysis!")
|
| 269 |
-
|
| 270 |
-
# Open, read in information
|
| 271 |
-
df = pd.read_csv(filename, header = 0)
|
| 272 |
-
|
| 273 |
-
# Verify size
|
| 274 |
-
print("Verifying data read from file is the correct length...\n")
|
| 275 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
| 276 |
-
|
| 277 |
-
# Turn into dictionary
|
| 278 |
-
full_to_short_names = df.set_index('full_name').T.to_dict('records')[0]
|
| 279 |
-
|
| 280 |
-
# Print information
|
| 281 |
-
print('full_to_short_names =\n',full_to_short_names)
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
# ### II.3.4. SHORT_TO_FULL_COLUMN_NAMES
|
| 285 |
-
|
| 286 |
-
# In[12]:
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
# SHORT_TO_FULL_COLUMN_NAMES
|
| 290 |
-
filename = "short_to_full_column_names.csv"
|
| 291 |
-
filename = os.path.join(metadata_dir, filename)
|
| 292 |
-
|
| 293 |
-
# Check file exists
|
| 294 |
-
if not os.path.exists(filename):
|
| 295 |
-
print("WARNING: Could not find desired file: " + filename)
|
| 296 |
-
else :
|
| 297 |
-
print("The",filename,"file was imported for further analysis!")
|
| 298 |
-
|
| 299 |
-
# Open, read in information
|
| 300 |
-
df = pd.read_csv(filename, header = 0)
|
| 301 |
-
|
| 302 |
-
# Verify size
|
| 303 |
-
print("Verifying data read from file is the correct length...\n")
|
| 304 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
| 305 |
-
|
| 306 |
-
# Turn into dictionary
|
| 307 |
-
short_to_full_names = df.set_index('short_name').T.to_dict('records')[0]
|
| 308 |
-
|
| 309 |
-
# Print information
|
| 310 |
-
print('short_to_full_names =\n',short_to_full_names)
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
# ### II.3.5. SAMPLES COLORS
|
| 314 |
-
|
| 315 |
-
# In[13]:
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
# COLORS INFORMATION
|
| 319 |
-
filename = "sample_color_data.csv"
|
| 320 |
-
filename = os.path.join(metadata_dir, filename)
|
| 321 |
-
|
| 322 |
-
# Check file exists
|
| 323 |
-
if not os.path.exists(filename):
|
| 324 |
-
print("WARNING: Could not find desired file: " + filename)
|
| 325 |
-
else :
|
| 326 |
-
print("The",filename,"file was imported for further analysis!")
|
| 327 |
-
|
| 328 |
-
# Open, read in information
|
| 329 |
-
df = pd.read_csv(filename, header = 0)
|
| 330 |
-
df = df.drop(columns = ['hex'])
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
# our tuple of float values for rgb, (r, g, b) was read in
|
| 334 |
-
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 335 |
-
# substrings and convert them back into floats
|
| 336 |
-
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 337 |
-
|
| 338 |
-
# Verify size
|
| 339 |
-
print("Verifying data read from file is the correct length...\n")
|
| 340 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
| 341 |
-
|
| 342 |
-
# Turn into dictionary
|
| 343 |
-
sample_color_dict = df.set_index('Sample_ID')['rgb'].to_dict()
|
| 344 |
-
|
| 345 |
-
# Print information
|
| 346 |
-
print('sample_color_dict =\n',sample_color_dict)
|
| 347 |
-
sample_color_dict = pd.DataFrame.from_dict(sample_color_dict, orient='index', columns=['R', 'G', 'B'])
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
# In[14]:
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
sample_color_dict
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
# ### II.3.6. CHANNELS COLORS
|
| 357 |
-
|
| 358 |
-
# In[15]:
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
# CHANNELS
|
| 362 |
-
filename = "channel_color_data.csv"
|
| 363 |
-
filename = os.path.join(metadata_dir, filename)
|
| 364 |
-
|
| 365 |
-
# Check file exists
|
| 366 |
-
if not os.path.exists(filename):
|
| 367 |
-
print("WARNING: Could not find desired file: "+filename)
|
| 368 |
-
else :
|
| 369 |
-
print("The",filename,"file was imported for further analysis!")
|
| 370 |
-
|
| 371 |
-
# Open, read in information
|
| 372 |
-
df = pd.read_csv(filename, header = 0)
|
| 373 |
-
df = df.drop(columns = ['hex'])
|
| 374 |
-
|
| 375 |
-
# our tuple of float values for rgb, (r, g, b) was read in
|
| 376 |
-
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 377 |
-
# substrings and convert them back into floats
|
| 378 |
-
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 379 |
-
|
| 380 |
-
# Verify size
|
| 381 |
-
print("Verifying data read from file is the correct length...\n")
|
| 382 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
| 383 |
-
|
| 384 |
-
# Turn into dictionary
|
| 385 |
-
channel_color_dict = df.set_index('Channel')['rgb'].to_dict()
|
| 386 |
-
|
| 387 |
-
# Print information
|
| 388 |
-
print('channel_color_dict =\n',channel_color_dict)
|
| 389 |
-
channel_color_dict = pd.DataFrame.from_dict(channel_color_dict, orient='index', columns=['R', 'G', 'B'])
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
# In[16]:
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
channel_color_dict
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
# ### II.3.7. ROUNDS COLORS
|
| 399 |
-
|
| 400 |
-
# In[17]:
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
# ROUND
|
| 404 |
-
filename = "round_color_data.csv"
|
| 405 |
-
filename = os.path.join(metadata_dir, filename)
|
| 406 |
-
|
| 407 |
-
# Check file exists
|
| 408 |
-
if not os.path.exists(filename):
|
| 409 |
-
print("WARNING: Could not find desired file: "+filename)
|
| 410 |
-
else :
|
| 411 |
-
print("The",filename,"file was imported for further analysis!")
|
| 412 |
-
|
| 413 |
-
# Open, read in information
|
| 414 |
-
df = pd.read_csv(filename, header = 0)
|
| 415 |
-
df = df.drop(columns = ['hex'])
|
| 416 |
-
|
| 417 |
-
# our tuple of float values for rgb, (r, g, b) was read in
|
| 418 |
-
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
| 419 |
-
# substrings and convert them back into floats
|
| 420 |
-
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
| 421 |
-
|
| 422 |
-
# Verify size
|
| 423 |
-
print("Verifying data read from file is the correct length...\n")
|
| 424 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
| 425 |
-
|
| 426 |
-
# Turn into dictionary
|
| 427 |
-
round_color_dict = df.set_index('Round')['rgb'].to_dict()
|
| 428 |
-
|
| 429 |
-
# Print information
|
| 430 |
-
print('round_color_dict =\n',round_color_dict)
|
| 431 |
-
round_color_dict = pd.DataFrame.from_dict(round_color_dict, orient='index', columns=['R', 'G', 'B'])
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
# In[18]:
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
round_color_dict
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
# ### II.3.8. DATA
|
| 441 |
-
|
| 442 |
-
# In[19]:
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
# DATA
|
| 446 |
-
# List files in the directory
|
| 447 |
-
# Check if the directory exists
|
| 448 |
-
if os.path.exists(input_data_dir):
|
| 449 |
-
ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith("_qc_eda.csv")]
|
| 450 |
-
|
| 451 |
-
print("The following CSV files were detected:")
|
| 452 |
-
print([sample for sample in ls_samples])
|
| 453 |
-
else:
|
| 454 |
-
print(f"The directory {input_data_dir} does not exist.")
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
# In[20]:
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
# Import all the others files
|
| 461 |
-
dfs = {}
|
| 462 |
-
|
| 463 |
-
# Set variable to hold default header values
|
| 464 |
-
# First gather information on expected headers using first file in ls_samples
|
| 465 |
-
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
|
| 466 |
-
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
|
| 467 |
-
expected_headers = df.columns.values
|
| 468 |
-
print(expected_headers)
|
| 469 |
-
|
| 470 |
-
###############################
|
| 471 |
-
# !! This may take a while !! #
|
| 472 |
-
###############################
|
| 473 |
-
for sample in ls_samples:
|
| 474 |
-
file_path = os.path.join(input_data_dir,sample)
|
| 475 |
-
|
| 476 |
-
try:
|
| 477 |
-
# Read the CSV file
|
| 478 |
-
df = pd.read_csv(file_path, index_col=0)
|
| 479 |
-
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
|
| 480 |
-
|
| 481 |
-
if not df.empty:
|
| 482 |
-
# Reorder the columns to match the expected headers list
|
| 483 |
-
df = df.reindex(columns=expected_headers)
|
| 484 |
-
print(sample, "file is processed !\n")
|
| 485 |
-
#print(df)
|
| 486 |
-
|
| 487 |
-
except pd.errors.EmptyDataError:
|
| 488 |
-
print(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
| 489 |
-
ls_samples.remove(sample)
|
| 490 |
-
|
| 491 |
-
# Add df to dfs
|
| 492 |
-
dfs[sample] = df
|
| 493 |
-
|
| 494 |
-
#print(dfs)
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
# In[21]:
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
# Merge dfs into one df
|
| 501 |
-
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
|
| 502 |
-
#del dfs
|
| 503 |
-
df.head()
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
# In[22]:
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
df.shape
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
# In[23]:
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
# Check for NaN entries (should not be any unless columns do not align)
|
| 516 |
-
# False means no NaN entries
|
| 517 |
-
# True means NaN entries
|
| 518 |
-
df.isnull().any().any()
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
# ## II.4. *FILTERING
|
| 522 |
-
|
| 523 |
-
# In[24]:
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
print("Number of cells before filtering :", df.shape[0])
|
| 527 |
-
cells_before_filter = f"Number of cells before filtering :{df.shape[0]}"
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
# In[25]:
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
#print(df)
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
# In[26]:
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
# Delete small cells and objects w/high AF555 Signal (RBCs)
|
| 540 |
-
# We usually use the 95th percentile calculated during QC_EDA
|
| 541 |
-
df = df.loc[(df['Nucleus_Size'] > 42 )]
|
| 542 |
-
df = df.loc[(df['Nucleus_Size'] < 216)]
|
| 543 |
-
print("Number of cells after filtering on nucleus size:", df.shape[0])
|
| 544 |
-
|
| 545 |
-
df = df.loc[(df['AF555_Cell_Intensity_Average'] < 2000)]
|
| 546 |
-
print("Number of cells after filtering on AF555A ___ intensity:", df.shape[0])
|
| 547 |
-
cells_after_filter_nucleus = f"Number of cells after filtering on nucleus size: {df.shape[0]}"
|
| 548 |
-
cells_after_filter_intensity = f"Number of cells after filtering on AF555A ___ intensity: {df.shape[0]}"
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
# In[27]:
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
# Assign cell type
|
| 555 |
-
# Assign tumor cells at each row at first (random assigning here just for development purposes)
|
| 556 |
-
# Generate random values for cell_type column
|
| 557 |
-
random_values = np.random.randint(0, 10, size=len(df))
|
| 558 |
-
|
| 559 |
-
# Assign cell type based on random values
|
| 560 |
-
def assign_cell_type(n):
|
| 561 |
-
return np.random.choice(['STROMA','CANCER','IMMUNE','ENDOTHELIAL'])
|
| 562 |
-
|
| 563 |
-
df['cell_type'] = np.vectorize(assign_cell_type)(random_values)
|
| 564 |
-
df['cell_subtype'] = df['cell_type'].copy()
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
# In[28]:
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
filtered_dataframe = df
|
| 571 |
-
df.head()
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
# In[29]:
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
quality_control_df = filtered_dataframe
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
# In[30]:
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
def check_index_format(index_str, ls_samples):
|
| 584 |
-
"""
|
| 585 |
-
Checks if the given index string follows the specified format.
|
| 586 |
-
|
| 587 |
-
Args:
|
| 588 |
-
index_str (str): The index string to be checked.
|
| 589 |
-
ls_samples (list): A list of valid sample names.
|
| 590 |
-
|
| 591 |
-
Returns:
|
| 592 |
-
bool: True if the index string follows the format, False otherwise.
|
| 593 |
-
"""
|
| 594 |
-
# Split the index string into parts
|
| 595 |
-
parts = index_str.split('_')
|
| 596 |
-
|
| 597 |
-
# Check if there are exactly 3 parts
|
| 598 |
-
if len(parts) != 3:
|
| 599 |
-
print(len(parts))
|
| 600 |
-
return False
|
| 601 |
-
|
| 602 |
-
# Check if the first part is in ls_samples
|
| 603 |
-
sample_name = parts[0]
|
| 604 |
-
if f'{sample_name}_qc_eda.csv' not in ls_samples:
|
| 605 |
-
print(sample_name)
|
| 606 |
-
return False
|
| 607 |
-
|
| 608 |
-
# Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
|
| 609 |
-
location = parts[1]
|
| 610 |
-
valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
|
| 611 |
-
if location not in valid_locations:
|
| 612 |
-
print(location)
|
| 613 |
-
return False
|
| 614 |
-
|
| 615 |
-
# Check if the third part is a number
|
| 616 |
-
try:
|
| 617 |
-
index = int(parts[2])
|
| 618 |
-
except ValueError:
|
| 619 |
-
print(index)
|
| 620 |
-
return False
|
| 621 |
-
|
| 622 |
-
# If all checks pass, return True
|
| 623 |
-
return True
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
# In[31]:
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
# Let's take a look at a few features to make sure our dataframe is as expected
|
| 630 |
-
df.index
|
| 631 |
-
def check_format_ofindex(index):
|
| 632 |
-
for index in df.index:
|
| 633 |
-
check_index = check_index_format(index, ls_samples)
|
| 634 |
-
if check_index is False:
|
| 635 |
-
index_format = "Bad"
|
| 636 |
-
return index_format
|
| 637 |
-
|
| 638 |
-
index_format = "Good"
|
| 639 |
-
return index_format
|
| 640 |
-
print(check_format_ofindex(df.index))
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
# In[32]:
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
import panel as pn
|
| 647 |
-
import pandas as pd
|
| 648 |
-
|
| 649 |
-
def quality_check(file, not_intensities):
|
| 650 |
-
# Load the output file
|
| 651 |
-
df = file
|
| 652 |
-
|
| 653 |
-
# Check Index
|
| 654 |
-
check_index = check_format_ofindex(df.index)
|
| 655 |
-
|
| 656 |
-
# Check Shape
|
| 657 |
-
check_shape = df.shape
|
| 658 |
-
|
| 659 |
-
# Check for NaN entries
|
| 660 |
-
check_no_null = df.isnull().any().any()
|
| 661 |
-
|
| 662 |
-
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
| 663 |
-
if (mean_intensity == 0).any():
|
| 664 |
-
df = df.loc[mean_intensity > 0, :]
|
| 665 |
-
print("df.shape after removing 0 mean values: ", df.shape)
|
| 666 |
-
check_zero_intensities = f'Shape after removing 0 mean values: {df.shape}'
|
| 667 |
-
else:
|
| 668 |
-
print("No zero intensity values.")
|
| 669 |
-
check_zero_intensities = "No zero intensity values."
|
| 670 |
-
|
| 671 |
-
# Create a quality check results table
|
| 672 |
-
quality_check_results_table = pd.DataFrame({
|
| 673 |
-
'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
|
| 674 |
-
'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
|
| 675 |
-
})
|
| 676 |
-
|
| 677 |
-
# Create a quality check results component
|
| 678 |
-
quality_check_results_component = pn.Card(
|
| 679 |
-
pn.pane.DataFrame(quality_check_results_table),
|
| 680 |
-
title="Quality Control Results",
|
| 681 |
-
header_background="#2196f3",
|
| 682 |
-
header_color="white",
|
| 683 |
-
)
|
| 684 |
-
|
| 685 |
-
return quality_check_results_component
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
# ## II.5. CELL TYPES COLORS
|
| 689 |
-
# Establish colors to use throughout workflow
|
| 690 |
-
|
| 691 |
-
# we want colors that are categorical, since Cell Type is a non-ordered category.
|
| 692 |
-
# A categorical color palette will have dissimilar colors.
|
| 693 |
-
# Get those unique colors
|
| 694 |
-
cell_types = ['STROMA','CANCER','IMMUNE','ENDOTHELIAL']
|
| 695 |
-
color_values = sb.color_palette("hls", n_colors = len(cell_types))
|
| 696 |
-
# each color value is a tuple of three values: (R, G, B)
|
| 697 |
-
|
| 698 |
-
print("Unique cell types are:",df.cell_type.unique())
|
| 699 |
-
# Display those unique colors
|
| 700 |
-
sb.palplot(sb.color_palette(color_values))
|
| 701 |
-
# In[33]:
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
# Define your custom colors for each cell type
|
| 705 |
-
custom_colors = {
|
| 706 |
-
'CANCER': (0.1333, 0.5451, 0.1333),
|
| 707 |
-
'STROMA': (0.4, 0.4, 0.4),
|
| 708 |
-
'IMMUNE': (1, 1, 0),
|
| 709 |
-
'ENDOTHELIAL': (0.502, 0, 0.502)
|
| 710 |
-
}
|
| 711 |
-
|
| 712 |
-
# Retrieve the list of cell types
|
| 713 |
-
cell_types = list(custom_colors.keys())
|
| 714 |
-
|
| 715 |
-
# Extract the corresponding colors from the dictionary
|
| 716 |
-
color_values = [custom_colors[cell] for cell in cell_types]
|
| 717 |
-
|
| 718 |
-
# Display the colors
|
| 719 |
-
sb.palplot(sb.color_palette(color_values))
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
# In[34]:
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
# Store in a dctionnary
|
| 726 |
-
celltype_color_dict = dict(zip(cell_types, color_values))
|
| 727 |
-
celltype_color_dict
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
# In[35]:
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
celltype_color_df = pd.DataFrame.from_dict(celltype_color_dict, orient='index', columns=['R', 'G', 'B'])
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
# In[36]:
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
# Save color information (mapping and legend) to metadata directory
|
| 740 |
-
# Create dataframe
|
| 741 |
-
celltype_color_df = color_dict_to_df(celltype_color_dict, "cell_type")
|
| 742 |
-
celltype_color_df.head()
|
| 743 |
-
|
| 744 |
-
# Save to file in metadatadirectory
|
| 745 |
-
present_dir = os.path.dirname(os.path.realpath(__file__))
|
| 746 |
-
filename = os.path.join(present_dir, "celltype_color_data.csv")
|
| 747 |
-
#filename = "celltype_color_data.csv"
|
| 748 |
-
filename = os.path.join(metadata_dir, filename)
|
| 749 |
-
celltype_color_df.to_csv(filename, index = False)
|
| 750 |
-
print("File" + filename + " was created!")
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
# In[37]:
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
celltype_color_df.head()
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
# In[38]:
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
# Legend of cell type info only
|
| 763 |
-
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
| 764 |
-
g.axis('off')
|
| 765 |
-
handles = []
|
| 766 |
-
for item in celltype_color_dict.keys():
|
| 767 |
-
h = g.bar(0,0, color = celltype_color_dict[item],
|
| 768 |
-
label = item, linewidth =0)
|
| 769 |
-
handles.append(h)
|
| 770 |
-
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell type'),
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
filename = "Celltype_legend.png"
|
| 774 |
-
filename = os.path.join(metadata_images_dir, filename)
|
| 775 |
-
plt.savefig(filename, bbox_inches = 'tight')
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
# In[39]:
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
metadata
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
# In[40]:
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
df.columns.values
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
# In[41]:
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
df.shape
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
# In[42]:
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
metadata.shape
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
# ## II.6. *CELL SUBTYPES COLORS
|
| 803 |
-
|
| 804 |
-
# In[43]:
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
# Establish colors to use throughout workflow
|
| 808 |
-
|
| 809 |
-
# we want colors that are categorical, since Cell Type is a non-ordered category.
|
| 810 |
-
# A categorical color palette will have dissimilar colors.
|
| 811 |
-
# Get those unique colors
|
| 812 |
-
cell_subtypes = ['DC','B', 'TCD4','TCD8','M1','M2','Treg', \
|
| 813 |
-
'IMMUNE_OTHER', 'CANCER', 'αSMA_myCAF',\
|
| 814 |
-
'STROMA_OTHER', 'ENDOTHELIAL']
|
| 815 |
-
color_values = sb.color_palette("Paired",n_colors = len(cell_subtypes))
|
| 816 |
-
# each color value is a tuple of three values: (R, G, B)
|
| 817 |
-
|
| 818 |
-
print("Unique cell types are:",df.cell_subtype.unique())
|
| 819 |
-
# Display those unique colors
|
| 820 |
-
sb.palplot(sb.color_palette(color_values))
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
# In[44]:
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
# Store in a dctionnary
|
| 827 |
-
cellsubtype_color_dict = dict(zip(cell_subtypes, color_values))
|
| 828 |
-
cellsubtype_color_dict
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
# In[45]:
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
cellsubtype_color_df = pd.DataFrame.from_dict(cellsubtype_color_dict, orient='index', columns=['R', 'G', 'B'])
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
# In[46]:
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
# Save color information (mapping and legend) to metadata directory
|
| 841 |
-
# Create dataframe
|
| 842 |
-
cellsubtype_color_df = color_dict_to_df(cellsubtype_color_dict, "cell_subtype")
|
| 843 |
-
|
| 844 |
-
# Save to file in metadatadirectory
|
| 845 |
-
filename = "cellsubtype_color_data.csv"
|
| 846 |
-
filename = os.path.join(metadata_dir, filename)
|
| 847 |
-
cellsubtype_color_df.to_csv(filename, index = False)
|
| 848 |
-
print("File" + filename + " was created!")
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
# In[47]:
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
cellsubtype_color_df.head()
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
# In[48]:
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
# Legend of cell type info only
|
| 861 |
-
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
| 862 |
-
g.axis('off')
|
| 863 |
-
handles = []
|
| 864 |
-
for item in cellsubtype_color_dict.keys():
|
| 865 |
-
h = g.bar(0,0, color = cellsubtype_color_dict[item],
|
| 866 |
-
label = item, linewidth =0)
|
| 867 |
-
handles.append(h)
|
| 868 |
-
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell subtype'),
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
filename = "Cellsubtype_legend.png"
|
| 872 |
-
filename = os.path.join(metadata_images_dir, filename)
|
| 873 |
-
plt.savefig(filename, bbox_inches = 'tight')
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
# ## II.7. IMMUNE CHECKPOINT COLORS
|
| 877 |
-
|
| 878 |
-
# In[49]:
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
# Assign IMMUNE SUBTYPES
|
| 882 |
-
df['cell_subtype'] = df['cell_type'].copy()
|
| 883 |
-
df['immune_checkpoint'] = 'none'
|
| 884 |
-
df
|
| 885 |
-
|
| 886 |
-
immune_checkpoint = ['B7H4', 'PDL1', 'PD1', 'None']
|
| 887 |
-
color_values = sb.color_palette("husl",n_colors=len(immune_checkpoint))
|
| 888 |
-
# each color value is a tuple of three values: (R, G, B)
|
| 889 |
-
|
| 890 |
-
print("Unique immune checkpoint are:",df.immune_checkpoint.unique())
|
| 891 |
-
# Display those unique colors
|
| 892 |
-
sb.palplot(sb.color_palette(color_values))
|
| 893 |
-
# In[50]:
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
immune_checkpoint = ['B7H4', 'PDL1', 'PD1', 'B7H4_PDL1', 'None']
|
| 897 |
-
|
| 898 |
-
# Base colors for the primary checkpoints
|
| 899 |
-
base_colors = sb.color_palette("husl", n_colors=3) # Three distinct colors
|
| 900 |
-
|
| 901 |
-
# Function to mix two RGB colors
|
| 902 |
-
def mix_colors(color1, color2):
|
| 903 |
-
return tuple((c1 + c2) / 2 for c1, c2 in zip(color1, color2))
|
| 904 |
-
|
| 905 |
-
# Generate mixed colors for the combinations of checkpoints
|
| 906 |
-
mixed_colors = [
|
| 907 |
-
mix_colors(base_colors[0], base_colors[1]), # Mix B7H4 and PDL1
|
| 908 |
-
# mix_colors(base_colors[0], base_colors[2]), # Mix B7H4 and PD1
|
| 909 |
-
# mix_colors(base_colors[1], base_colors[2]), # Mix PDL1 and PD1
|
| 910 |
-
tuple(np.mean(base_colors, axis=0)) # Mix B7H4, PDL1, and PD1
|
| 911 |
-
]
|
| 912 |
-
|
| 913 |
-
# Adding the color for 'None'
|
| 914 |
-
#none_color = [(0.8, 0.8, 0.8)] # A shade of gray
|
| 915 |
-
|
| 916 |
-
# Combine all colors into one list
|
| 917 |
-
color_values = base_colors + mixed_colors #+ none_color
|
| 918 |
-
|
| 919 |
-
# Display unique immune checkpoint combinations
|
| 920 |
-
print("Unique immune checkpoint combinations are:", immune_checkpoint)
|
| 921 |
-
# Display the unique colors
|
| 922 |
-
sb.palplot(color_values)
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
# In[51]:
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
# Store in a dctionnary
|
| 929 |
-
immunecheckpoint_color_dict = dict(zip(immune_checkpoint, color_values))
|
| 930 |
-
immunecheckpoint_color_dict
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
# In[52]:
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
# Save color information (mapping and legend) to metadata directory
|
| 937 |
-
# Create dataframe
|
| 938 |
-
immunecheckpoint_color_df = color_dict_to_df(immunecheckpoint_color_dict, "immune_checkpoint")
|
| 939 |
-
immunecheckpoint_color_df.head()
|
| 940 |
-
|
| 941 |
-
# Save to file in metadatadirectory
|
| 942 |
-
filename = "immunecheckpoint_color_data.csv"
|
| 943 |
-
filename = os.path.join(metadata_dir, filename)
|
| 944 |
-
immunecheckpoint_color_df.to_csv(filename, index = False)
|
| 945 |
-
print("File " + filename + " was created!")
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
# In[53]:
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
# Legend of cell type info only
|
| 952 |
-
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
| 953 |
-
g.axis('off')
|
| 954 |
-
handles = []
|
| 955 |
-
for item in immunecheckpoint_color_dict.keys():
|
| 956 |
-
h = g.bar(0,0, color = immunecheckpoint_color_dict[item],
|
| 957 |
-
label = item, linewidth =0)
|
| 958 |
-
handles.append(h)
|
| 959 |
-
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Immune checkpoint'),
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
filename = "Cellsubtype_legend.png"
|
| 963 |
-
filename = os.path.join(metadata_images_dir, filename)
|
| 964 |
-
plt.savefig(filename, bbox_inches = 'tight')
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
# ## II.7. BACKGROUND SUBSTRACTION
|
| 968 |
-
|
| 969 |
-
# In[54]:
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
def do_background_sub(col, df, metadata):
|
| 973 |
-
#print(col.name)
|
| 974 |
-
location = metadata.loc[metadata['full_column'] == col.name, 'localisation'].values[0]
|
| 975 |
-
#print('location = ' + location)
|
| 976 |
-
channel = metadata.loc[metadata['full_column'] == col.name, 'Channel'].values[0]
|
| 977 |
-
#print('channel = ' + channel)
|
| 978 |
-
af_target = metadata.loc[
|
| 979 |
-
(metadata['Channel']==channel) \
|
| 980 |
-
& (metadata['localisation']==location) \
|
| 981 |
-
& (metadata['target_lower'].str.contains(r'^af\d{3}$')),\
|
| 982 |
-
'full_column'].values[0]
|
| 983 |
-
return col - df.loc[:,af_target]
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
# In[55]:
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
metadata_with_localisation = metadata
|
| 990 |
-
metadata_with_localisation
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
# In[56]:
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
#Normalization
|
| 997 |
-
|
| 998 |
-
df.loc[:, ~df.columns.isin(not_intensities)] = \
|
| 999 |
-
df.loc[:, ~df.columns.isin(not_intensities)].apply(lambda column: divide_exp_time(column, 'Exp', metadata), axis = 0)
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
# In[57]:
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
normalization_df = df
|
| 1006 |
-
normalization_df.head()
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
# In[58]:
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
# Do background subtraction
|
| 1013 |
-
# this uses a df (metadata) outside of
|
| 1014 |
-
# the scope of the lambda...
|
| 1015 |
-
# careful that this might break inside of a script...
|
| 1016 |
-
|
| 1017 |
-
df.loc[:,~df.columns.isin(not_intensities)] = \
|
| 1018 |
-
df.loc[:,~df.columns.isin(not_intensities)].apply(lambda column: do_background_sub(column, df, metadata),axis = 0)
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
-
# In[59]:
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
df
|
| 1025 |
-
background_substraction_df = df
|
| 1026 |
-
background_substraction_df.head()
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
# In[60]:
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
# Drop AF columns
|
| 1033 |
-
df = df.filter(regex='^(?!AF\d{3}).*')
|
| 1034 |
-
print(df.columns.values)
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
# In[61]:
|
| 1038 |
-
|
| 1039 |
-
|
| 1040 |
-
intensities_df = df.loc[:, ~df.columns.isin(not_intensities)]
|
| 1041 |
-
intensities_df
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
# In[62]:
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
normalization_df.head()
|
| 1048 |
-
|
| 1049 |
-
|
| 1050 |
-
# In[63]:
|
| 1051 |
-
|
| 1052 |
-
|
| 1053 |
-
metadata_df = metadata_with_localisation
|
| 1054 |
-
intensities_df = intensities_df # Assuming you have loaded the intensities DataFrame
|
| 1055 |
-
|
| 1056 |
-
# Create a list of column names from the intensities DataFrame
|
| 1057 |
-
column_names = intensities_df.columns.tolist()
|
| 1058 |
-
|
| 1059 |
-
# Create a Select widget for choosing a column
|
| 1060 |
-
column_selector = pn.widgets.Select(name='Select Column', options=column_names)
|
| 1061 |
-
|
| 1062 |
-
# Create a Markdown widget to display the selected column's information
|
| 1063 |
-
column_info_md = pn.pane.Markdown(name='Column Information', width=400, object='Select a column to view its information.')
|
| 1064 |
-
|
| 1065 |
-
# Define a function to update the column information
|
| 1066 |
-
def update_column_info(event):
|
| 1067 |
-
selected_column = event.new
|
| 1068 |
-
if selected_column:
|
| 1069 |
-
# Get the selected column's intensity
|
| 1070 |
-
intensity = intensities_df[selected_column].values
|
| 1071 |
-
|
| 1072 |
-
# Get the corresponding channel, localization, and experiment from the metadata
|
| 1073 |
-
channel = metadata_df.loc[metadata_df['full_column'] == selected_column, 'Channel'].values[0]
|
| 1074 |
-
localization = metadata_df.loc[metadata_df['full_column'] == selected_column, 'localisation'].values[0]
|
| 1075 |
-
exposure = metadata_df.loc[metadata_df['full_column'] == selected_column, 'Exp'].values[0]
|
| 1076 |
-
|
| 1077 |
-
# Create a Markdown string with the column information
|
| 1078 |
-
column_info_text = f"**Intensity:** {intensity}\n\n**Channel:** {channel}\n\n**Localization:** {localization}\n\n**Exposure:** {exposure}"
|
| 1079 |
-
|
| 1080 |
-
# Update the Markdown widget with the column information
|
| 1081 |
-
column_info_md.object = column_info_text
|
| 1082 |
-
else:
|
| 1083 |
-
column_info_md.object = 'Select a column to view its information.'
|
| 1084 |
-
|
| 1085 |
-
# Watch for changes in the column selector and update the column information
|
| 1086 |
-
column_selector.param.watch(update_column_info, 'value')
|
| 1087 |
-
|
| 1088 |
-
# Create a Panel app and display the widgets
|
| 1089 |
-
bs_info = pn.Column(column_selector, column_info_md)
|
| 1090 |
-
pn.extension()
|
| 1091 |
-
bs_info.servable()
|
| 1092 |
-
|
| 1093 |
-
|
| 1094 |
-
# In[64]:
|
| 1095 |
-
|
| 1096 |
-
|
| 1097 |
-
normalization_df.head()
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
# In[65]:
|
| 1101 |
-
|
| 1102 |
-
|
| 1103 |
-
import panel as pn
|
| 1104 |
-
df_widget = pn.widgets.DataFrame(metadata, name="MetaData")
|
| 1105 |
-
app2 = pn.template.GoldenTemplate(
|
| 1106 |
-
site="Cyc-IF",
|
| 1107 |
-
title=" Background-Substraction",
|
| 1108 |
-
main=[pn.Tabs(("Background-Substraction",pn.Column(
|
| 1109 |
-
#pn.Column(pn.pane.Markdown("### Celltype thresholds"), pn.pane.DataFrame(celltype_color_df)),
|
| 1110 |
-
#pn.Column(pn.pane.Markdown("### Cell Subtype thresholds"), pn.pane.DataFrame(cellsubtype_color_df)),
|
| 1111 |
-
#pn.Column(pn.pane.Markdown("### Cells Before Filtering"),pn.pane.Str(cells_before_filter)),
|
| 1112 |
-
#pn.Column(pn.pane.Markdown("### Cells After Filtering Nucleus"),pn.pane.Str(cells_after_filter_nucleus)),
|
| 1113 |
-
#pn.Column(pn.pane.Markdown("### Cells After Filtering Intensity"),pn.pane.Str(cells_after_filter_intensity)),
|
| 1114 |
-
#pn.Column(pn.pane.Markdown("### Dataframe after filtering"), pn.pane.DataFrame(filtered_dataframe.head())),
|
| 1115 |
-
pn.Column(pn.pane.Markdown("### The metadata obtained that specifies the localisation:"), metadata_with_localisation.head(8)),
|
| 1116 |
-
pn.Column(pn.pane.Markdown("### The channels and exposure of each intensities column"), bs_info),
|
| 1117 |
-
pn.Column(pn.pane.Markdown("### Dataframe after perfroming normalization"),pn.pane.DataFrame(normalization_df.head(), width = 1500)),
|
| 1118 |
-
pn.Column(pn.pane.Markdown("### Dataframe after background Substraction"), pn.pane.DataFrame(background_substraction_df.head()),
|
| 1119 |
-
))),
|
| 1120 |
-
("Quality Control", pn.Column(
|
| 1121 |
-
quality_check(quality_control_df, not_intensities)
|
| 1122 |
-
#pn.pane.Markdown("### The Quality check results are:"), quality_check_results(check_shape, check_no_null, check_all_expected_files_present, check_zero_intensities)
|
| 1123 |
-
))
|
| 1124 |
-
)],)
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
# In[66]:
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
app2.servable()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|