Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from usearch.index import Index
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from datasets import load_dataset
|
| 6 |
+
from sentencex import segment
|
| 7 |
+
|
| 8 |
+
model = SentenceTransformer("Corran/SciGenAllMiniLM")
|
| 9 |
+
|
| 10 |
+
train = load_dataset("Corran/SciGenColbertTriplets")['train']
|
| 11 |
+
|
| 12 |
+
rf = sorted(list(set(train['query'])))
|
| 13 |
+
rf_emb = model.encode(rf)
|
| 14 |
+
index = Index(ndim=rf_emb[0].size)
|
| 15 |
+
index.add(range(len(classes)), classes_emb)
|
| 16 |
+
|
| 17 |
+
def get_matches(input):
|
| 18 |
+
global index, model, rf
|
| 19 |
+
emb = model.encode(input,batch_size=128)
|
| 20 |
+
matches = index.search(emb,4)
|
| 21 |
+
if type(input)==list and len(input)>1:
|
| 22 |
+
matches = [m[0] for m in matches]
|
| 23 |
+
else:
|
| 24 |
+
matches = [m for m in matches]
|
| 25 |
+
return [(rf[m.key],m.distance) for m in matches]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def return_rf_scores(paragraph):
|
| 30 |
+
|
| 31 |
+
sentences = list(segment("en", paragraph))
|
| 32 |
+
matches = get_matches(sentences)
|
| 33 |
+
|
| 34 |
+
output = {}
|
| 35 |
+
for s,m in zip(sentences,matches):
|
| 36 |
+
output[s] = m
|
| 37 |
+
|
| 38 |
+
return output
|
| 39 |
+
|
| 40 |
+
demo = gr.Interface(fn=return_rf_scores, inputs="text", outputs="json")
|
| 41 |
+
demo.launch()
|