version 1 metric
Browse files- nl2bash_m.py +45 -17
nl2bash_m.py
CHANGED
|
@@ -94,38 +94,66 @@ class nl2bash_m(evaluate.Metric):
|
|
| 94 |
reference_urls=[],
|
| 95 |
)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def _compute(
|
| 98 |
self,
|
| 99 |
predictions,
|
| 100 |
-
references,
|
| 101 |
-
|
|
|
|
|
|
|
| 102 |
ignore_case=False,
|
| 103 |
-
ignore_punctuation=False,
|
| 104 |
ignore_numbers=False,
|
| 105 |
):
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
predictions = np.array([re.sub(s, "", x) for x in predictions])
|
| 110 |
-
references = np.array([re.sub(s, "", x) for x in references])
|
| 111 |
-
else:
|
| 112 |
-
predictions = np.asarray(predictions)
|
| 113 |
-
references = np.asarray(references)
|
| 114 |
|
| 115 |
if ignore_case:
|
| 116 |
predictions = np.char.lower(predictions)
|
| 117 |
references = np.char.lower(references)
|
| 118 |
|
| 119 |
-
if ignore_punctuation:
|
| 120 |
-
repl_table = string.punctuation.maketrans("", "", string.punctuation)
|
| 121 |
-
predictions = np.char.translate(predictions, table=repl_table)
|
| 122 |
-
references = np.char.translate(references, table=repl_table)
|
| 123 |
-
|
| 124 |
if ignore_numbers:
|
| 125 |
repl_table = string.digits.maketrans("", "", string.digits)
|
| 126 |
predictions = np.char.translate(predictions, table=repl_table)
|
| 127 |
references = np.char.translate(references, table=repl_table)
|
| 128 |
|
| 129 |
-
score_list = predictions == references
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
reference_urls=[],
|
| 95 |
)
|
| 96 |
|
| 97 |
+
def get_score(self, pred, ref):
|
| 98 |
+
if not pred and not ref: return 1
|
| 99 |
+
cor = 0
|
| 100 |
+
for i in range(min(len(pred), len(ref))):
|
| 101 |
+
if (pred[i] == ref[i]):
|
| 102 |
+
cor += 1
|
| 103 |
+
|
| 104 |
+
return cor/max(len(pred), len(ref))
|
| 105 |
+
|
| 106 |
def _compute(
|
| 107 |
self,
|
| 108 |
predictions,
|
| 109 |
+
references,
|
| 110 |
+
cmd_weight = 0.65,
|
| 111 |
+
opt_weight = 0.25,
|
| 112 |
+
arg_weight = 0.15,
|
| 113 |
ignore_case=False,
|
|
|
|
| 114 |
ignore_numbers=False,
|
| 115 |
):
|
| 116 |
|
| 117 |
+
predictions = np.asarray(predictions)
|
| 118 |
+
references = np.asarray(references)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
if ignore_case:
|
| 121 |
predictions = np.char.lower(predictions)
|
| 122 |
references = np.char.lower(references)
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
if ignore_numbers:
|
| 125 |
repl_table = string.digits.maketrans("", "", string.digits)
|
| 126 |
predictions = np.char.translate(predictions, table=repl_table)
|
| 127 |
references = np.char.translate(references, table=repl_table)
|
| 128 |
|
|
|
|
| 129 |
|
| 130 |
+
final_score = 0
|
| 131 |
+
|
| 132 |
+
for pred, ref in zip(predictions, references):
|
| 133 |
+
print(pred, ref)
|
| 134 |
+
pred_words, ref_words = pred[0].split(), ref[0].split()
|
| 135 |
+
# Get the cmd of predicted and ref
|
| 136 |
+
cmd_corr = 1 if pred_words.pop(0)==ref_words.pop(0) else 0
|
| 137 |
+
|
| 138 |
+
# Get the option of predicted and ref
|
| 139 |
+
pred_option = [ x for x in pred_words if x[0] == '-']
|
| 140 |
+
ref_option = [ x for x in ref_words if x[0] == '-']
|
| 141 |
+
|
| 142 |
+
# Get the arguments of predicted and ref
|
| 143 |
+
pred_args = [ x for x in pred_words if x[0] != '-']
|
| 144 |
+
ref_args = [ x for x in ref_words if x[0] != '-']
|
| 145 |
+
|
| 146 |
+
# Calculate scores
|
| 147 |
+
cmd_score = cmd_weight * cmd_corr
|
| 148 |
+
opt_score = opt_weight * self.get_score(pred_option, ref_option)
|
| 149 |
+
arg_score = arg_weight * self.get_score(pred_args, ref_args)
|
| 150 |
+
|
| 151 |
+
score = cmd_score + opt_score + arg_score
|
| 152 |
+
final_score += score
|
| 153 |
+
print(score)
|
| 154 |
+
|
| 155 |
+
final_score = final_score/len(self.preds)
|
| 156 |
+
print("f_s: ", final_score)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
return {"nl2bash_m": (final_score)}
|