File size: 14,907 Bytes
927854c
8f4d405
 
 
 
927854c
8f4d405
927854c
b3aba24
927854c
 
b3aba24
927854c
 
 
b3aba24
8f4d405
 
 
927854c
 
 
8f4d405
927854c
 
 
 
 
 
8f4d405
927854c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
927854c
 
 
 
 
 
 
 
 
8f4d405
927854c
8f4d405
927854c
 
8f4d405
5787d0a
927854c
5787d0a
927854c
 
 
5787d0a
927854c
5787d0a
 
927854c
5787d0a
8f4d405
927854c
5787d0a
 
 
927854c
5787d0a
 
927854c
5787d0a
8f4d405
927854c
 
 
8f4d405
 
927854c
 
 
 
 
 
 
 
 
 
 
 
 
8d4bf4a
927854c
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
927854c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
8f4d405
927854c
5787d0a
8f4d405
927854c
 
 
 
 
 
 
 
8f4d405
927854c
 
 
 
 
8f4d405
927854c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
927854c
8f4d405
 
 
 
 
 
 
 
 
 
927854c
 
8f4d405
 
927854c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
927854c
 
 
 
 
 
 
8f4d405
927854c
 
 
5787d0a
927854c
 
8f4d405
927854c
 
8f4d405
927854c
 
 
 
 
 
 
8f4d405
927854c
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
927854c
8f4d405
927854c
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
927854c
8f4d405
 
 
 
927854c
 
8f4d405
 
 
 
927854c
8f4d405
 
 
 
927854c
8f4d405
 
927854c
8f4d405
 
 
 
927854c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# llm_router.py - NOVITA AI API ONLY
import logging
import asyncio
from typing import Dict, Optional
from .models_config import LLM_CONFIG
from .config import get_settings

# Import OpenAI client for Novita AI API
try:
    from openai import OpenAI
    OPENAI_AVAILABLE = True
except ImportError:
    OPENAI_AVAILABLE = False
    logger = logging.getLogger(__name__)
    logger.error("openai package not available - Novita AI API requires openai package")

logger = logging.getLogger(__name__)

class LLMRouter:
    def __init__(self, hf_token=None, use_local_models: bool = False):
        """
        Initialize LLM Router with Novita AI API only.
        
        Args:
            hf_token: Not used (kept for backward compatibility)
            use_local_models: Must be False (local models disabled)
        """
        if use_local_models:
            raise ValueError("Local models are disabled. Only Novita AI API is supported.")
        
        self.settings = get_settings()
        self.novita_client = None
        
        # Validate OpenAI package
        if not OPENAI_AVAILABLE:
            raise ImportError(
                "openai package is required for Novita AI API. "
                "Install it with: pip install openai>=1.0.0"
            )
        
        # Validate API key
        if not self.settings.novita_api_key:
            raise ValueError(
                "NOVITA_API_KEY is required. "
                "Set it in environment variables or .env file"
            )
        
        # Initialize Novita AI client
        try:
            self.novita_client = OpenAI(
                base_url=self.settings.novita_base_url,
                api_key=self.settings.novita_api_key,
            )
            logger.info(f"✓ Novita AI API client initialized")
            logger.info(f"  Base URL: {self.settings.novita_base_url}")
            logger.info(f"  Model: {self.settings.novita_model}")
        except Exception as e:
            logger.error(f"Failed to initialize Novita AI client: {e}")
            raise RuntimeError(f"Could not initialize Novita AI API client: {e}") from e
    
    async def route_inference(self, task_type: str, prompt: str, **kwargs):
        """
        Route inference to Novita AI API.
        
        Args:
            task_type: Type of task (general_reasoning, intent_classification, etc.)
            prompt: Input prompt
            **kwargs: Additional parameters (max_tokens, temperature, etc.)
        
        Returns:
            Generated text response
        """
        logger.info(f"Routing inference to Novita AI API for task: {task_type}")
        
        if not self.novita_client:
            raise RuntimeError("Novita AI client not initialized")
        
        try:
            # Handle embedding generation (may need special handling)
            if task_type == "embedding_generation":
                logger.warning("Embedding generation via Novita API may require special implementation")
                # For now, use chat completion (may need adjustment based on Novita API capabilities)
                result = await self._call_novita_api(task_type, prompt, **kwargs)
            else:
                result = await self._call_novita_api(task_type, prompt, **kwargs)
            
            if result is None:
                logger.error(f"Novita AI API returned None for task: {task_type}")
                raise RuntimeError(f"Inference failed for task: {task_type}")
            
            logger.info(f"Inference complete for {task_type} (Novita AI API)")
            return result
            
        except Exception as e:
            logger.error(f"Novita AI API inference failed: {e}", exc_info=True)
            raise RuntimeError(
                f"Inference failed for task: {task_type}. "
                f"Novita AI API error: {e}"
            ) from e
    
    async def _call_novita_api(self, task_type: str, prompt: str, **kwargs) -> Optional[str]:
        """Call Novita AI API for inference."""
        if not self.novita_client:
            return None
        
        # Get model config
        model_config = self._select_model(task_type)
        model_name = kwargs.get('model', self.settings.novita_model)
        
        # Get optimized parameters
        max_tokens = kwargs.get('max_tokens', model_config.get('max_tokens', 4096))
        temperature = kwargs.get('temperature', 
            model_config.get('temperature', self.settings.deepseek_r1_temperature))
        top_p = kwargs.get('top_p', model_config.get('top_p', 0.95))
        stream = kwargs.get('stream', False)
        
        # Format prompt according to DeepSeek-R1 best practices
        formatted_prompt = self._format_deepseek_r1_prompt(prompt, task_type, model_config)
        
        # IMPORTANT: No system prompt - all instructions in user prompt
        messages = [{"role": "user", "content": formatted_prompt}]
        
        # Build request parameters
        request_params = {
            "model": model_name,
            "messages": messages,
            "stream": stream,
            "max_tokens": max_tokens,
            "temperature": temperature,
            "top_p": top_p,
        }
        
        try:
            if stream:
                # Handle streaming response
                response_text = ""
                stream_response = self.novita_client.chat.completions.create(**request_params)
                
                for chunk in stream_response:
                    if chunk.choices and len(chunk.choices) > 0:
                        delta = chunk.choices[0].delta
                        if delta and delta.content:
                            response_text += delta.content
                
                # Clean up reasoning tags if present
                response_text = self._clean_reasoning_tags(response_text)
                logger.info(f"Novita AI API generated response (length: {len(response_text)})")
                return response_text
            else:
                # Handle non-streaming response
                response = self.novita_client.chat.completions.create(**request_params)
                
                if response.choices and len(response.choices) > 0:
                    result = response.choices[0].message.content
                    # Clean up reasoning tags if present
                    result = self._clean_reasoning_tags(result)
                    logger.info(f"Novita AI API generated response (length: {len(result)})")
                    return result
                else:
                    logger.error("Novita AI API returned empty response")
                    return None
                
        except Exception as e:
            logger.error(f"Error calling Novita AI API: {e}", exc_info=True)
            raise
    
    def _format_deepseek_r1_prompt(self, prompt: str, task_type: str, model_config: dict) -> str:
        """
        Format prompt according to DeepSeek-R1 best practices:
        - No system prompt (all instructions in user prompt)
        - Force reasoning trigger for reasoning tasks
        - Add math directive for mathematical problems
        """
        formatted_prompt = prompt
        
        # Check if we should force reasoning prefix
        force_reasoning = (
            self.settings.deepseek_r1_force_reasoning and 
            model_config.get("force_reasoning_prefix", False)
        )
        
        if force_reasoning:
            # Force model to start with reasoning trigger
            formatted_prompt = f"`<think>`\n\n{formatted_prompt}"
        
        # Add math directive for mathematical problems
        if self._is_math_query(prompt):
            math_directive = "Please reason step by step, and put your final answer within \\boxed{}."
            formatted_prompt = f"{formatted_prompt}\n\n{math_directive}"
        
        return formatted_prompt
    
    def _is_math_query(self, prompt: str) -> bool:
        """Detect if query is mathematical"""
        math_keywords = [
            "solve", "calculate", "compute", "equation", "formula", 
            "mathematical", "algebra", "geometry", "calculus", "integral",
            "derivative", "theorem", "proof", "problem"
        ]
        prompt_lower = prompt.lower()
        return any(keyword in prompt_lower for keyword in math_keywords)
    
    def _clean_reasoning_tags(self, text: str) -> str:
        """Clean up reasoning tags from response"""
        text = text.replace("`<think>`", "").replace("`</think>`", "")
        text = text.strip()
        return text
    
    def _select_model(self, task_type: str) -> dict:
        """Select model configuration based on task type"""
        model_map = {
            "intent_classification": LLM_CONFIG["models"]["classification_specialist"],
            "embedding_generation": LLM_CONFIG["models"]["embedding_specialist"],
            "safety_check": LLM_CONFIG["models"]["safety_checker"],
            "general_reasoning": LLM_CONFIG["models"]["reasoning_primary"],
            "response_synthesis": LLM_CONFIG["models"]["reasoning_primary"]
        }
        return model_map.get(task_type, LLM_CONFIG["models"]["reasoning_primary"])
    
    async def get_available_models(self):
        """Get list of available models (Novita AI only)"""
        return ["Novita AI API - DeepSeek-R1-Distill-Qwen-7B"]
    
    async def health_check(self):
        """Perform health check on Novita AI API"""
        try:
            # Test API with a simple request
            test_response = self.novita_client.chat.completions.create(
                model=self.settings.novita_model,
                messages=[{"role": "user", "content": "test"}],
                max_tokens=5
            )
            
            return {
                "provider": "novita_api",
                "status": "healthy",
                "model": self.settings.novita_model,
                "base_url": self.settings.novita_base_url
            }
        except Exception as e:
            logger.error(f"Health check failed: {e}")
            return {
                "provider": "novita_api",
                "status": "unhealthy",
                "error": str(e)
            }
    
    def prepare_context_for_llm(self, raw_context: Dict, max_tokens: Optional[int] = None, 
                                user_input: Optional[str] = None) -> str:
        """
        Smart context windowing with user input priority.
        User input is NEVER truncated - context is reduced to fit.
        
        Args:
            raw_context: Context dictionary
            max_tokens: Optional override (uses config default if None)
            user_input: Optional explicit user input (takes priority over raw_context['user_input'])
        """
        # Use config budget if not provided
        if max_tokens is None:
            max_tokens = self.settings.context_preparation_budget
        
        # Get user input (explicit parameter takes priority)
        actual_user_input = user_input or raw_context.get('user_input', '')
        
        # Calculate user input tokens (simple estimation: 1 token ≈ 4 chars)
        user_input_tokens = len(actual_user_input) // 4
        
        # Ensure user input fits within dedicated budget
        user_input_max = self.settings.user_input_max_tokens
        if user_input_tokens > user_input_max:
            logger.warning(f"User input ({user_input_tokens} tokens) exceeds max ({user_input_max}), truncating")
            max_chars = user_input_max * 4
            actual_user_input = actual_user_input[:max_chars - 3] + "..."
            user_input_tokens = user_input_max
        
        # Reserve space for user input (it has highest priority)
        remaining_tokens = max_tokens - user_input_tokens
        if remaining_tokens < 0:
            logger.warning(f"User input ({user_input_tokens} tokens) exceeds total budget ({max_tokens})")
            remaining_tokens = 0
        
        logger.info(f"Token allocation: User input={user_input_tokens}, Context budget={remaining_tokens}, Total={max_tokens}")
        
        # Priority order for context elements (user input already handled)
        priority_elements = [
            ('recent_interactions', 0.8),
            ('user_preferences', 0.6),
            ('session_summary', 0.4),
            ('historical_context', 0.2)
        ]
        
        formatted_context = []
        total_tokens = user_input_tokens  # Start with user input tokens
        
        # Add user input first (unconditionally, never truncated)
        if actual_user_input:
            formatted_context.append(f"=== USER INPUT ===\n{actual_user_input}")
        
        # Now add context elements within remaining budget
        for element, priority in priority_elements:
            element_key_map = {
                'recent_interactions': raw_context.get('interaction_contexts', []),
                'user_preferences': raw_context.get('preferences', {}),
                'session_summary': raw_context.get('session_context', {}),
                'historical_context': raw_context.get('user_context', '')
            }
            
            content = element_key_map.get(element, '')
            
            # Convert to string if needed
            if isinstance(content, dict):
                content = str(content)
            elif isinstance(content, list):
                content = "\n".join([str(item) for item in content[:10]])
            
            if not content:
                continue
            
            # Estimate tokens (simple: 1 token ≈ 4 chars)
            tokens = len(content) // 4
            
            if total_tokens + tokens <= max_tokens:
                formatted_context.append(f"=== {element.upper()} ===\n{content}")
                total_tokens += tokens
            elif priority > 0.5 and remaining_tokens > 0:  # Critical elements - truncate if needed
                available = max_tokens - total_tokens
                if available > 100:  # Only truncate if we have meaningful space
                    truncated = self._truncate_to_tokens(content, available)
                    formatted_context.append(f"=== {element.upper()} (TRUNCATED) ===\n{truncated}")
                    total_tokens += available
                break
        
        logger.info(f"Context prepared: {total_tokens}/{max_tokens} tokens (user input: {user_input_tokens}, context: {total_tokens - user_input_tokens})")
        return "\n\n".join(formatted_context)
    
    def _truncate_to_tokens(self, content: str, max_tokens: int) -> str:
        """Truncate content to fit within token limit"""
        # Simple character-based truncation (1 token ≈ 4 chars)
        max_chars = max_tokens * 4
        if len(content) <= max_chars:
            return content
        return content[:max_chars - 3] + "..."