MassageMateNLP / app.py
BiEchi
final push
84d3475
import gradio as gr
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import BertModel
# ignore warnings
import warnings
warnings.filterwarnings("ignore")
def infer(text):
output_str = ''
for col in ['position_x', 'position_y', 'force', 'velocity_xy', 'velocity_z']:
model_path = f'models/bert/{col}'
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model.eval()
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0].detach().cpu().numpy()[0]
answer = ['-1', '0', '1'][scores.argmax()]
output_str += f'{col}: {answer}\n'
return output_str
iface = gr.Interface(fn=infer, inputs="text", outputs="text")
iface.launch()