Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import torch | |
| from torch.utils.data import Dataset, DataLoader | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from transformers import BertModel | |
| # ignore warnings | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| def infer(text): | |
| output_str = '' | |
| for col in ['position_x', 'position_y', 'force', 'velocity_xy', 'velocity_z']: | |
| model_path = f'models/bert/{col}' | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| model.eval() | |
| encoded_input = tokenizer(text, return_tensors='pt') | |
| output = model(**encoded_input) | |
| scores = output[0].detach().cpu().numpy()[0] | |
| answer = ['-1', '0', '1'][scores.argmax()] | |
| output_str += f'{col}: {answer}\n' | |
| return output_str | |
| iface = gr.Interface(fn=infer, inputs="text", outputs="text") | |
| iface.launch() | |