Spaces:
Runtime error
Runtime error
File size: 10,433 Bytes
8018595 cc034ee 8018595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
"""Streamlit page: Assessment."""
import os
import tempfile
from pathlib import Path
import streamlit as st
import yaml
# Configure page layout to be wider
st.set_page_config(layout="wide")
from collections import Counter
import pandas as pd
import plotly.graph_objects as go
from ui_utils import initialize_session_state
from sentinel.config import AppConfig, ModelConfig, ResourcePaths
from sentinel.conversation import ConversationManager
from sentinel.factory import SentinelFactory
from sentinel.reporting import generate_excel_report, generate_pdf_report
initialize_session_state()
if st.session_state.user_profile is None:
st.warning(
"Please complete your profile on the Profile page before running an assessment."
)
st.stop()
def create_conversation_manager(config: dict) -> ConversationManager:
"""Create a conversation manager from the current configuration.
Args:
config: A dictionary containing the current configuration.
Returns:
ConversationManager: A conversation manager instance.
"""
# Define base paths relative to project root
root = Path(__file__).resolve().parents[3]
# Load model config to get provider and model name
model_config_path = root / "configs" / "model" / f"{config['model']}.yaml"
with open(model_config_path) as f:
model_data = yaml.safe_load(f)
# Create knowledge base paths
knowledge_base_paths = ResourcePaths(
persona=root / "prompts" / "persona" / "default.md",
instruction_assessment=root / "prompts" / "instruction" / "assessment.md",
instruction_conversation=root / "prompts" / "instruction" / "conversation.md",
output_format_assessment=root / "configs" / "output_format" / "assessment.yaml",
output_format_conversation=root
/ "configs"
/ "output_format"
/ "conversation.yaml",
cancer_modules_dir=root / "configs" / "knowledge_base" / "cancer_modules",
dx_protocols_dir=root / "configs" / "knowledge_base" / "dx_protocols",
)
# Create app config
app_config = AppConfig(
model=ModelConfig(
provider=model_data["provider"], model_name=model_data["model_name"]
),
knowledge_base_paths=knowledge_base_paths,
selected_cancer_modules=config.get("cancer_modules", []),
selected_dx_protocols=config.get("dx_protocols", []),
)
# Create factory and conversation manager
factory = SentinelFactory(app_config)
return factory.create_conversation_manager()
manager = create_conversation_manager(st.session_state.config)
st.session_state.conversation_manager = manager
st.title("🔬 Assessment")
if st.button("Run Assessment", type="primary"):
with st.spinner("Running..."):
result = manager.initial_assessment(st.session_state.user_profile)
st.session_state.assessment = result
assessment = st.session_state.get("assessment")
if assessment:
# --- 1. PRE-SORT DATA ---
sorted_risk_assessments = sorted(
assessment.risk_assessments, key=lambda x: x.risk_level or 0, reverse=True
)
sorted_dx_recommendations = sorted(
assessment.dx_recommendations,
key=lambda x: x.recommendation_level or 0,
reverse=True,
)
# --- 2. ROW 1: OVERALL RISK SCORE ---
st.subheader("Overall Risk Score")
if assessment.overall_risk_score is not None:
fig = go.Figure(
go.Indicator(
mode="gauge+number",
value=assessment.overall_risk_score,
title={"text": "Overall Score"},
gauge={"axis": {"range": [0, 100]}},
)
)
fig.update_layout(height=300, margin=dict(t=50, b=40, l=40, r=40))
st.plotly_chart(fig, use_container_width=True)
st.divider()
# --- 3. ROW 2: RISK & RECOMMENDATION CHARTS ---
col1, col2 = st.columns(2)
with col1:
st.subheader("Cancer Risk Levels")
if sorted_risk_assessments:
cancers = [ra.cancer_type for ra in sorted_risk_assessments]
levels = [ra.risk_level or 0 for ra in sorted_risk_assessments]
short_cancers = [c[:28] + "..." if len(c) > 28 else c for c in cancers]
fig = go.Figure(
go.Bar(
x=levels,
y=short_cancers,
orientation="h",
hovertext=cancers,
hovertemplate="<b>%{hovertext}</b><br>Risk Level: %{x}<extra></extra>",
)
)
fig.update_layout(
xaxis=dict(range=[0, 5], title="Risk Level"),
yaxis=dict(autorange="reversed"),
margin=dict(t=20, b=40, l=40, r=40),
)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Dx Recommendations")
if sorted_dx_recommendations:
tests = [dx.test_name for dx in sorted_dx_recommendations]
recs = [dx.recommendation_level or 0 for dx in sorted_dx_recommendations]
short_tests = [t[:28] + "..." if len(t) > 28 else t for t in tests]
fig = go.Figure(
go.Bar(
x=recs,
y=short_tests,
orientation="h",
hovertext=tests,
hovertemplate="<b>%{hovertext}</b><br>Recommendation: %{x}<extra></extra>",
)
)
fig.update_layout(
xaxis=dict(range=[0, 5], title="Recommendation"),
yaxis=dict(autorange="reversed"),
margin=dict(t=20, b=40, l=40, r=40),
)
st.plotly_chart(fig, use_container_width=True)
st.divider()
# --- 4. ROW 3: RISK FACTOR VISUALIZATIONS ---
if assessment.identified_risk_factors:
col3, col4 = st.columns(2)
with col3:
st.subheader("Risk Factor Summary")
categories = [
rf.category.value for rf in assessment.identified_risk_factors
]
category_counts = Counter(categories)
pie_fig = go.Figure(
go.Pie(
labels=list(category_counts.keys()),
values=list(category_counts.values()),
hole=0.3,
)
)
pie_fig.update_layout(
height=400,
margin=dict(t=20, b=40, l=40, r=40),
legend=dict(
orientation="v", yanchor="middle", y=0.5, xanchor="left", x=1.05
),
)
st.plotly_chart(pie_fig, use_container_width=True)
with col4:
st.subheader("Identified Risk Factors")
risk_factor_data = [
{"Category": rf.category.value, "Description": rf.description}
for rf in assessment.identified_risk_factors
]
rf_df = pd.DataFrame(risk_factor_data)
st.dataframe(rf_df, use_container_width=True, height=400, hide_index=True)
# --- 5. EXPANDERS (using sorted data) ---
with st.expander("Overall Summary"):
st.markdown(assessment.overall_summary, unsafe_allow_html=True)
with st.expander("Calculated Risk Scores (Ground Truth)"):
if assessment.calculated_risk_scores:
st.info(
"These scores have been calculated using validated clinical risk models "
"and represent the authoritative risk assessment."
)
for cancer_type, scores in sorted(
assessment.calculated_risk_scores.items()
):
st.markdown(f"### {cancer_type}")
for score in scores:
st.markdown(f"**{score.name}**: {score.score}")
if score.description:
st.write(f"*{score.description}*")
if score.interpretation:
st.write(score.interpretation)
if score.references:
with st.expander("References"):
for ref in score.references:
st.write(f"- {ref}")
st.divider()
else:
st.write("No risk scores calculated.")
with st.expander("AI-Generated Risk Interpretations"):
for ra in sorted_risk_assessments:
st.markdown(f"**{ra.cancer_type}** - {ra.risk_level or 'N/A'}/5")
st.write(ra.explanation)
if ra.recommended_steps:
st.write("**Recommended Steps:**")
steps = ra.recommended_steps
if isinstance(steps, list):
for step in steps:
st.write(f"- {step}")
else:
st.write(f"- {steps}")
if ra.lifestyle_advice:
st.write(f"*{ra.lifestyle_advice}*")
st.divider()
with st.expander("Dx Recommendations"):
for dx in sorted_dx_recommendations:
st.markdown(f"**{dx.test_name}** - {dx.recommendation_level or 'N/A'}/5")
if dx.frequency:
st.write(f"Frequency: {dx.frequency}")
st.write(dx.rationale)
if dx.applicable_guideline:
st.write(f"Guideline: {dx.applicable_guideline}")
st.divider()
# --- 6. EXISTING DOWNLOAD AND CHAT LOGIC ---
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as f:
generate_pdf_report(assessment, st.session_state.user_profile, f.name)
f.seek(0)
pdf_data = f.read()
st.download_button("Download PDF", pdf_data, file_name="assessment.pdf")
os.unlink(f.name)
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as f:
generate_excel_report(assessment, st.session_state.user_profile, f.name)
f.seek(0)
xls_data = f.read()
st.download_button("Download Excel", xls_data, file_name="assessment.xlsx")
# for q, a in manager.history:
# st.chat_message("user").write(q)
# st.chat_message("assistant").write(a)
if question := st.chat_input("Ask a follow-up question"):
with st.spinner("Thinking..."):
resp = manager.follow_up(question)
st.chat_message("user").write(question)
st.chat_message("assistant").write(resp.response)
|