File size: 17,862 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# Risk Models Specification

This document outlines the requirements and specifications for implementing risk models in the Sentinel cancer risk assessment system.

## Overview

Risk models in Sentinel are designed to calculate cancer risk scores using structured user input data. All risk models must follow a consistent architecture, use the new `UserInput` structure, implement proper validation, and maintain comprehensive test coverage.

## Core Architecture

### Base Class

All risk models must inherit from `RiskModel` in `src/sentinel/risk_models/base.py`:

```python
from sentinel.risk_models.base import RiskModel

class YourRiskModel(RiskModel):
    def __init__(self):
        super().__init__("your_model_name")
```

### Required Methods

Every risk model must implement these abstract methods:

```python
def compute_score(self, user: UserInput) -> str:
    """Compute the risk score for a given user profile.

    Args:
        user: The user profile containing demographics, medical history, etc.

    Returns:
        str: Risk percentage as a string or an N/A message if inapplicable.

    Raises:
        ValueError: If required inputs are missing or invalid.
    """

def cancer_type(self) -> str:
    """Return the cancer type this model assesses."""
    return "breast"  # or "lung", "prostate", etc.

def description(self) -> str:
    """Return a detailed description of the model."""

def interpretation(self) -> str:
    """Return guidance on how to interpret the results."""

def references(self) -> list[str]:
    """Return list of reference citations."""
```

## UserInput Structure

### Required Imports

```python
from typing import Annotated
from pydantic import Field
from sentinel.risk_models.base import RiskModel
from sentinel.user_input import (
    # Import specific enums and models you need
    CancerType,
    ChronicCondition,
    Demographics,
    Ethnicity,
    FamilyMemberCancer,
    FamilyRelation,
    FamilySide,
    RelationshipDegree,
    Sex,
    SymptomEntry,
    UserInput,
    # ... other specific imports
)
```

### UserInput Hierarchy

The `UserInput` class follows a hierarchical structure:

```
UserInput
β”œβ”€β”€ demographics: Demographics
β”‚   β”œβ”€β”€ age_years: int
β”‚   β”œβ”€β”€ sex: Sex (enum)
β”‚   β”œβ”€β”€ ethnicity: Ethnicity | None
β”‚   └── anthropometrics: Anthropometrics
β”‚       β”œβ”€β”€ height_cm: float | None
β”‚       └── weight_kg: float | None
β”œβ”€β”€ lifestyle: Lifestyle
β”‚   β”œβ”€β”€ smoking: SmokingHistory
β”‚   └── alcohol: AlcoholConsumption
β”œβ”€β”€ personal_medical_history: PersonalMedicalHistory
β”‚   β”œβ”€β”€ chronic_conditions: list[ChronicCondition]
β”‚   β”œβ”€β”€ previous_cancers: list[CancerType]
β”‚   β”œβ”€β”€ genetic_mutations: list[GeneticMutation]
β”‚   β”œβ”€β”€ tyrer_cuzick_polygenic_risk_score: float | None
β”‚   └── # ... other fields
β”œβ”€β”€ female_specific: FemaleSpecific | None
β”‚   β”œβ”€β”€ menstrual: MenstrualHistory
β”‚   β”œβ”€β”€ parity: ParityHistory
β”‚   └── breast_health: BreastHealthHistory
β”œβ”€β”€ symptoms: list[SymptomEntry]
└── family_history: list[FamilyMemberCancer]
```

## REQUIRED_INPUTS Specification

### Structure

Every risk model must define a `REQUIRED_INPUTS` class attribute using Pydantic's `Annotated` types with `Field` constraints:

```python
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
    "demographics.age_years": (Annotated[int, Field(ge=18, le=100)], True),
    "demographics.sex": (Sex, True),
    "demographics.ethnicity": (Ethnicity | None, False),
    "demographics.anthropometrics.height_cm": (Annotated[float, Field(gt=0)], False),
    "demographics.anthropometrics.weight_kg": (Annotated[float, Field(gt=0)], False),
    "female_specific.menstrual.age_at_menarche": (Annotated[int, Field(ge=8, le=25)], False),
    "personal_medical_history.tyrer_cuzick_polygenic_risk_score": (Annotated[float, Field(gt=0)], False),
    "family_history": (list, False),  # list[FamilyMemberCancer]
    "symptoms": (list, False),  # list[SymptomEntry]
}
```

### Field Constraints

Use appropriate `Field` constraints for validation:

- `ge=X`: Greater than or equal to X
- `le=X`: Less than or equal to X
- `gt=X`: Greater than X
- `lt=X`: Less than X

### Required vs Optional

- `True`: Field is required for the model
- `False`: Field is optional but validated if present

## Input Validation

### Validation in compute_score

Every `compute_score` method must start with input validation:

```python
def compute_score(self, user: UserInput) -> str:
    """Compute the risk score for a given user profile."""
    # Validate inputs first
    is_valid, errors = self.validate_inputs(user)
    if not is_valid:
        raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")

    # Continue with model-specific logic...
```

### Model-Specific Validation

Add additional validation as needed:

```python
# Check sex applicability
if user.demographics.sex != Sex.FEMALE:
    return "N/A: Model is only applicable to female patients."

# Check age range
if not (35 <= user.demographics.age_years <= 85):
    return "N/A: Age is outside the validated range."

# Check required data availability
if user.female_specific is None:
    return "N/A: Missing female-specific information required for model."
```

## Extending UserInput

### When to Extend

If a risk model requires fields or enums that don't exist in `UserInput`, **do not** use replacement values or hacks. Instead, propose extending `UserInput`:

1. **Missing Enums**: Add new values to existing enums (e.g., `ChronicCondition`, `SymptomType`)
2. **Missing Fields**: Add new fields to appropriate sections (e.g., `PersonalMedicalHistory`, `BreastHealthHistory`)
3. **Missing Models**: Create new Pydantic models if needed

### Extension Process

1. **Identify Missing Elements**: Document what's needed for the model
2. **Propose Extension**: Suggest specific additions to `UserInput`
3. **Implement Extension**: Add the new fields/enums to `src/sentinel/user_input.py`
4. **Update Tests**: Add tests for new fields in `tests/test_user_input.py`
5. **Update Model**: Use the new fields in your risk model
6. **Run Tests**: Ensure all tests pass

### Example Extensions

```python
# Adding new ChronicCondition enum values
class ChronicCondition(str, Enum):
    # ... existing values
    ENDOMETRIAL_POLYPS = "endometrial_polyps"
    ANAEMIA = "anaemia"

# Adding new fields to PersonalMedicalHistory
class PersonalMedicalHistory(StrictBaseModel):
    # ... existing fields
    tyrer_cuzick_polygenic_risk_score: float | None = Field(
        None,
        gt=0,
        description="Tyrer-Cuzick polygenic risk score as relative risk multiplier",
    )

# Adding new fields to BreastHealthHistory
class BreastHealthHistory(StrictBaseModel):
    # ... existing fields
    lobular_carcinoma_in_situ: bool | None = Field(
        None,
        description="History of lobular carcinoma in situ (LCIS) diagnosis",
    )
```

## Data Access Patterns

### Demographics

```python
age = user.demographics.age_years
sex = user.demographics.sex
ethnicity = user.demographics.ethnicity
height_cm = user.demographics.anthropometrics.height_cm
weight_kg = user.demographics.anthropometrics.weight_kg
```

### Female-Specific Data

```python
if user.female_specific is not None:
    fs = user.female_specific
    menarche_age = fs.menstrual.age_at_menarche
    menopause_age = fs.menstrual.age_at_menopause
    num_births = fs.parity.num_live_births
    first_birth_age = fs.parity.age_at_first_live_birth
    num_biopsies = fs.breast_health.num_biopsies
    atypical_hyperplasia = fs.breast_health.atypical_hyperplasia
    lcis = fs.breast_health.lobular_carcinoma_in_situ
```

### Medical History

```python
chronic_conditions = user.personal_medical_history.chronic_conditions
previous_cancers = user.personal_medical_history.previous_cancers
genetic_mutations = user.personal_medical_history.genetic_mutations
polygenic_score = user.personal_medical_history.tyrer_cuzick_polygenic_risk_score
```

### Family History

```python
for member in user.family_history:
    if member.cancer_type == CancerType.BREAST:
        relation = member.relation
        age_at_diagnosis = member.age_at_diagnosis
        degree = member.degree
        side = member.side
```

### Symptoms

```python
for symptom in user.symptoms:
    symptom_type = symptom.symptom_type
    severity = symptom.severity
    duration_days = symptom.duration_days
```

## Enum Usage

### Always Use Enums

Never use string literals. Always use the appropriate enums:

```python
# βœ… Correct
if user.demographics.sex == Sex.FEMALE:
if member.cancer_type == CancerType.BREAST:
if member.relation == FamilyRelation.MOTHER:
if member.degree == RelationshipDegree.FIRST:
if member.side == FamilySide.MATERNAL:

# ❌ Incorrect
if user.demographics.sex == "female":
if member.cancer_type == "breast":
if member.relation == "mother":
```

### Enum Mapping

When you need to map enums to model-specific codes:

```python
def _race_code_from_ethnicity(ethnicity: Ethnicity | None) -> int:
    """Map ethnicity enum to model-specific race code."""
    if not ethnicity:
        return 1  # Default

    if ethnicity == Ethnicity.BLACK:
        return 2
    if ethnicity in {Ethnicity.ASIAN, Ethnicity.PACIFIC_ISLANDER}:
        return 3
    if ethnicity == Ethnicity.HISPANIC:
        return 6
    return 1  # Default to White
```

## Testing Requirements

### Test File Structure

Create comprehensive test files following this pattern:

```python
import pytest
from sentinel.user_input import (
    # Import all needed models and enums
    Anthropometrics,
    BreastHealthHistory,
    CancerType,
    Demographics,
    Ethnicity,
    FamilyMemberCancer,
    FamilyRelation,
    FamilySide,
    FemaleSpecific,
    Lifestyle,
    MenstrualHistory,
    ParityHistory,
    PersonalMedicalHistory,
    RelationshipDegree,
    Sex,
    SmokingHistory,
    SmokingStatus,
    UserInput,
)
from sentinel.risk_models import YourRiskModel

# Ground truth test cases
GROUND_TRUTH_CASES = [
    {
        "name": "test_case_name",
        "input": UserInput(
            demographics=Demographics(
                age_years=40,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=13),
                parity=ParityHistory(num_live_births=1, age_at_first_live_birth=25),
                breast_health=BreastHealthHistory(),
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.BREAST,
                    age_at_diagnosis=55,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                )
            ],
        ),
        "expected": 1.5,  # Expected risk percentage
    },
    # ... more test cases
]

class TestYourRiskModel:
    """Test suite for YourRiskModel."""

    def setup_method(self):
        """Initialize model instance for testing."""
        self.model = YourRiskModel()

    @pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda x: x["name"])
    def test_ground_truth_validation(self, case):
        """Test against ground truth results."""
        user_input = case["input"]
        expected_risk = case["expected"]

        actual_risk_str = self.model.compute_score(user_input)

        if "N/A" in actual_risk_str:
            pytest.fail(f"Model returned N/A: {actual_risk_str}")

        actual_risk = float(actual_risk_str)
        assert actual_risk == pytest.approx(expected_risk, abs=0.01)

    def test_validation_errors(self):
        """Test that model raises ValueError for invalid inputs."""
        # Test invalid age
        user_input = UserInput(
            demographics=Demographics(
                age_years=30,  # Below minimum
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            # ... rest of input
        )

        with pytest.raises(ValueError, match=r"Invalid inputs for.*:"):
            self.model.compute_score(user_input)

    def test_inapplicable_cases(self):
        """Test cases where model returns N/A."""
        # Test male patient
        user_input = UserInput(
            demographics=Demographics(
                age_years=50,
                sex=Sex.MALE,  # Wrong sex
                anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
            ),
            # ... rest of input
        )

        score = self.model.compute_score(user_input)
        assert "N/A" in score
```

### Test Coverage Requirements

- **Ground Truth Validation**: Test against known reference values
- **Input Validation**: Test that invalid inputs raise `ValueError`
- **Edge Cases**: Test boundary conditions and edge cases
- **Inapplicable Cases**: Test cases where model should return "N/A"
- **Enum Usage**: Test that all enums are used correctly
- **Family History**: Test various family relationship combinations
- **Error Handling**: Test error conditions and exception handling

## Code Quality Requirements

### Pre-commit Hooks

All code must pass these pre-commit hooks:

- **unimport**: Remove unused imports
- **ruff format**: Code formatting
- **ruff check**: Linting and style checks
- **pylint**: Code quality analysis
- **darglint**: Docstring validation
- **pydocstyle**: Docstring style checks
- **codespell**: Spell checking

### Code Style

- Use type hints throughout
- Write clear, concise docstrings
- Follow PEP 8 style guidelines
- Use meaningful variable names
- Add comments for complex logic
- Handle edge cases gracefully

### Error Handling

```python
def compute_score(self, user: UserInput) -> str:
    """Compute the risk score for a given user profile."""
    try:
        # Validate inputs
        is_valid, errors = self.validate_inputs(user)
        if not is_valid:
            raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")

        # Model-specific validation
        if user.demographics.sex != Sex.FEMALE:
            return "N/A: Model is only applicable to female patients."

        # Calculate risk
        risk = self._calculate_risk(user)
        return f"{risk:.2f}"

    except Exception as e:
        return f"N/A: Error calculating risk - {e!s}"
```

## Migration Checklist

When adapting an existing risk model to the new structure:

- [ ] Update imports to use new `user_input` module
- [ ] Add `REQUIRED_INPUTS` with Pydantic validation
- [ ] Refactor `compute_score` to use new `UserInput` structure
- [ ] Replace string literals with enums
- [ ] Update parameter extraction logic
- [ ] Add input validation at start of `compute_score`
- [ ] Update all test cases to use new `UserInput` structure
- [ ] Run full test suite to ensure 100% pass rate
- [ ] Run pre-commit hooks to ensure code quality
- [ ] Document any `UserInput` extensions needed
- [ ] Update model documentation and references

## Examples

### Complete Risk Model Template

```python
"""Your cancer risk model implementation."""

from typing import Annotated
from pydantic import Field
from sentinel.risk_models.base import RiskModel
from sentinel.user_input import (
    CancerType,
    Demographics,
    Ethnicity,
    FamilyMemberCancer,
    FamilyRelation,
    RelationshipDegree,
    Sex,
    UserInput,
)

class YourRiskModel(RiskModel):
    """Compute cancer risk using the Your model."""

    def __init__(self):
        super().__init__("your_model")

    REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
        "demographics.age_years": (Annotated[int, Field(ge=18, le=100)], True),
        "demographics.sex": (Sex, True),
        "demographics.ethnicity": (Ethnicity | None, False),
        "family_history": (list, False),  # list[FamilyMemberCancer]
    }

    def compute_score(self, user: UserInput) -> str:
        """Compute the risk score for a given user profile."""
        # Validate inputs first
        is_valid, errors = self.validate_inputs(user)
        if not is_valid:
            raise ValueError(f"Invalid inputs for Your: {'; '.join(errors)}")

        # Model-specific validation
        if user.demographics.sex != Sex.FEMALE:
            return "N/A: Model is only applicable to female patients."

        # Extract parameters
        age = user.demographics.age_years
        ethnicity = user.demographics.ethnicity

        # Count family history
        family_count = sum(
            1 for member in user.family_history
            if member.cancer_type == CancerType.BREAST
            and member.degree == RelationshipDegree.FIRST
        )

        # Calculate risk (example)
        risk = self._calculate_risk(age, family_count, ethnicity)
        return f"{risk:.2f}"

    def _calculate_risk(self, age: int, family_count: int, ethnicity: Ethnicity | None) -> float:
        """Calculate the actual risk value."""
        # Implementation here
        return 1.5  # Example

    def cancer_type(self) -> str:
        return "breast"

    def description(self) -> str:
        return "Your model description here."

    def interpretation(self) -> str:
        return "Interpretation guidance here."

    def references(self) -> list[str]:
        return ["Your reference here."]
```

This specification ensures consistency, maintainability, and quality across all risk models in the Sentinel system.