File size: 15,824 Bytes
0451e1c
8018595
 
 
 
 
 
 
 
 
0451e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8018595
3fc6f6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0451e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc6f6d
0451e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fc6f6d
8018595
 
0451e1c
 
 
 
 
8018595
0451e1c
 
 
 
8018595
0451e1c
 
 
 
 
 
8018595
0451e1c
 
 
 
 
 
 
8018595
0451e1c
 
 
 
 
 
 
 
 
8018595
0451e1c
 
 
8018595
0451e1c
8018595
 
 
0ba176c
f6b7a59
8018595
f6b7a59
8018595
 
 
0ba176c
f6b7a59
0ba176c
8018595
 
 
0451e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Repository Guidelines

This repository contains the LLM-based Cancer Risk Assessment Assistant.

## Core Technologies
- **FastAPI** for the web framework
- **LangChain** for LLM orchestration
- **uv** for environment and dependency management
- **hydra:** for configuration management

## Development Setup

### Environment Setup
- Create the virtual environment (at '.venv') with `uv sync`.
- As the repository uses uv, the uv should be used to run all commands, e.g., "uv run python ..." NOT "python ...".

### Running Commands
- **Streamlit Interface**: `uv run streamlit run apps/streamlit_ui/main.py`
- **CLI Demo**: `uv run python apps/cli/main.py`
- **Tests**: `uv run pytest`

## Coding Standards

### Coding Philosophy
- Write simple, explicit, modular code
- Prioritize clarity over cleverness
- Prefer small pure functions over large ones
- Return early instead of nesting deeply
- Favor functions over classes unless essential
- Favor simple replication over heavy abstraction
- Keep comments short and only where code isn't self-explanatory
- Avoid premature optimization or over-engineering

### Variable Naming
- **Avoid single-letter variable names** (x, y, i, j, e, t, f, m, c, ct) in favor of descriptive names.
- **Avoid abbreviations** (fh, ct, w, h) in favor of full descriptive names.
- Use context-specific names for loop indices based on what you're iterating over:
  - `item_index` for general enumeration
  - `line_index` for text line iteration
  - `column_index` for table/array column iteration
  - `row_index` for table/array row iteration
- Use descriptive names for comprehensions and iterations:
  - `item` instead of `i` for general items
  - `element` instead of `e` for list elements
  - `key` instead of `k` for dictionary keys
  - `value` instead of `v` for dictionary values
- Use descriptive names for coordinates and positions:
  - `x_position`, `y_position` instead of `x`, `y`
  - `width`, `height` instead of `w`, `h`
- Use descriptive names for data structures:
  - `file_path` instead of `f` for file paths
  - `model` instead of `m` for model instances
  - `user` instead of `u` for user objects

**Examples from recent refactoring:**
- `for i, ref in enumerate(references)` β†’ `for ref_index, ref in enumerate(references)`
- `for e in examples` β†’ `for example in examples`
- `for m in models` β†’ `for model in models`
- `x = pdf.get_x()` β†’ `x_position = pdf.get_x()`
- `fh = family_history` β†’ `family_history = family_history` (avoid abbreviations)
- `ct for ct in cancer_types` β†’ `cancer_type for cancer_type in cancer_types`
- `f in MODELS_DIR.glob` β†’ `file_path in MODELS_DIR.glob`
- `t in field_type.__args__` β†’ `type_arg in field_type.__args__`

### Path Handling
- **Always use `pathlib.Path`** for all file I/O, joining, and globbing
- Accept `Path | str` at function boundaries; normalize to `Path` internally
- **Never use `os.path`** for path operations

Example:
```python
from pathlib import Path

def read_text(file: Path | str) -> str:
    path = Path(file)
    return path.read_text(encoding="utf-8")
```

### Type Hints and Modern Python
- **Use modern type hints**: `list`, `dict`, `tuple`, `set` (not `List`, `Dict`, etc.)
- **Use PEP 604 unions**: `A | B` (not `Union[A, B]` or `Optional[A]`)
- Import from `typing` only when necessary (`TypedDict`, `Literal`, `Annotated`, etc.)
- **Never use** `from __future__ import annotations`
- Add type hints to all public functions and methods
- Prefer precise types (`float`, `Path`, etc.) over generic ones
- If `Any` is required, isolate and document why

### Import Management
- **Place all imports at the top of the file**, never inside functions or classes
- Group imports in three sections with blank lines between:
  1. Standard library imports
  2. Third-party library imports
  3. Local/project imports
- This improves performance (imports loaded once) and code readability

### Error Handling and Logging
- **Use `try/except` only for I/O or external APIs**
- Catch specific exceptions only (never broad `except:`)
- Raise clear, actionable error messages
- **Use `loguru`** for logging, never `print()` in production code

Example:
```python
from loguru import logger

try:
    data = Path(file_path).read_text(encoding="utf-8")
except FileNotFoundError as error:
    logger.error(f"Configuration file not found: {file_path}")
    raise ValueError(f"Missing required config: {file_path}") from error
```

### Docstring Standards
- **Use Google-style docstrings** for all public functions and classes
- Do NOT include type hints in docstrings (they're in the signature)
- Describe behavior, invariants, side effects, and edge cases
- Include examples for complex functions
- Avoid verbose docstrings for simple, self-explanatory functions

## Testing

### Testing Philosophy
- Write meaningful tests that verify core functionality and prevent regressions
- Use `pytest` as the testing framework
- Tests go under `tests/` mirroring the source layout
- Test both valid and invalid input scenarios

### Test Types
- **Unit tests**: Small, deterministic, one concept per test
- **Integration tests**: Real workflows or reference comparisons with external systems
- Use `pytest.mark` to tag slow or manual tests

### Test Coverage Requirements
- Ensure comprehensive test coverage for all risk models
- **Ground Truth Validation**: Test against known reference values
- **Input Validation**: Test that invalid inputs raise `ValueError`
- **Edge Cases**: Test boundary conditions
- **Inapplicable Cases**: Test when models should return "N/A"

### Running Tests
```bash
uv run pytest              # Run all tests
uv run pytest -q          # Quiet mode
uv run pytest -v          # Verbose mode
uv run pytest tests/test_risk_models/  # Specific directory
```

### Pre-Submission Checklist
Before committing code, verify:
1. βœ… Run `uv run pytest -q` (all tests pass)
2. βœ… Run `pre-commit run --all-files` (all hooks pass)
3. βœ… No `print()` statements in production code
4. βœ… No broad `except:` blocks
5. βœ… All type hints present on public functions
6. βœ… File paths use `pathlib.Path`
7. βœ… Logging uses `loguru`

## Risk Models

### Implemented Models

The assistant currently includes the following built-in risk calculators:

- **Gail** - Breast cancer risk
- **Claus** - Breast cancer risk based on family history
- **Tyrer-Cuzick** - Breast cancer risk (IBIS model)
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
- **PLCOm2012** - Lung cancer risk
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
- **CRC-PRO** - Colorectal cancer risk
- **PCPT** - Prostate cancer risk
- **Extended PBCG** - Prostate cancer risk (extended model)
- **Prostate Mortality** - Prostate cancer-specific mortality prediction
- **MRAT** - Melanoma risk (5-year prediction)
- **aMAP** - Hepatocellular carcinoma (liver cancer) risk
- **QCancer** - Multi-site cancer differential

Additional models should follow the interfaces under `src/sentinel/risk_models`.

### Risk Model Implementation Guide

#### Base Architecture

All risk models must inherit from `RiskModel` in `src/sentinel/risk_models/base.py`:

```python
from sentinel.risk_models.base import RiskModel

class YourRiskModel(RiskModel):
    def __init__(self):
        super().__init__("your_model_name")
```

#### Required Methods

Every risk model must implement these abstract methods:

```python
def compute_score(self, user: UserInput) -> str:
    """Compute the risk score for a given user profile.

    Args:
        user: The user profile containing demographics, medical history, etc.

    Returns:
        str: Risk percentage as a string or an N/A message if inapplicable.

    Raises:
        ValueError: If required inputs are missing or invalid.
    """

def cancer_type(self) -> str:
    """Return the cancer type this model assesses."""
    return "breast"  # or "lung", "prostate", etc.

def description(self) -> str:
    """Return a detailed description of the model."""

def interpretation(self) -> str:
    """Return guidance on how to interpret the results."""

def references(self) -> list[str]:
    """Return list of reference citations."""
```

#### UserInput Structure

**All risk models must use the centralized `UserInput` structure** - this is the single source of truth for all data types and enums. The `UserInput` class follows a hierarchical structure:

```
UserInput
β”œβ”€β”€ demographics: Demographics
β”‚   β”œβ”€β”€ age_years: int
β”‚   β”œβ”€β”€ sex: Sex (enum)
β”‚   β”œβ”€β”€ ethnicity: Ethnicity | None
β”‚   └── anthropometrics: Anthropometrics
β”‚       β”œβ”€β”€ height_cm: float | None
β”‚       └── weight_kg: float | None
β”œβ”€β”€ lifestyle: Lifestyle
β”‚   β”œβ”€β”€ smoking: SmokingHistory
β”‚   └── alcohol: AlcoholConsumption
β”œβ”€β”€ personal_medical_history: PersonalMedicalHistory
β”‚   β”œβ”€β”€ chronic_conditions: list[ChronicCondition]
β”‚   β”œβ”€β”€ previous_cancers: list[CancerType]
β”‚   β”œβ”€β”€ genetic_mutations: list[GeneticMutation]
β”‚   └── tyrer_cuzick_polygenic_risk_score: float | None
β”œβ”€β”€ female_specific: FemaleSpecific | None
β”‚   β”œβ”€β”€ menstrual: MenstrualHistory
β”‚   β”œβ”€β”€ parity: ParityHistory
β”‚   └── breast_health: BreastHealthHistory
β”œβ”€β”€ symptoms: list[SymptomEntry]
└── family_history: list[FamilyMemberCancer]
```

#### REQUIRED_INPUTS Specification

Every risk model must define a `REQUIRED_INPUTS` class attribute using Pydantic's `Annotated` types with `Field` constraints:

```python
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
    "demographics.age_years": (Annotated[int, Field(ge=18, le=100)], True),
    "demographics.sex": (Sex, True),
    "demographics.ethnicity": (Ethnicity | None, False),
    "family_history": (list, False),  # list[FamilyMemberCancer]
    "symptoms": (list, False),  # list[SymptomEntry]
}
```

#### Input Validation

Every `compute_score` method must start with input validation:

```python
def compute_score(self, user: UserInput) -> str:
    """Compute the risk score for a given user profile."""
    # Validate inputs first
    is_valid, errors = self.validate_inputs(user)
    if not is_valid:
        raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")

    # Model-specific validation
    if user.demographics.sex != Sex.FEMALE:
        return "N/A: Model is only applicable to female patients."

    # Continue with model-specific logic...
```

#### Data Access Patterns

```python
# Demographics
age = user.demographics.age_years
sex = user.demographics.sex
ethnicity = user.demographics.ethnicity

# Female-specific data
if user.female_specific is not None:
    menarche_age = user.female_specific.menstrual.age_at_menarche
    num_births = user.female_specific.parity.num_live_births

# Family history
for member in user.family_history:
    if member.cancer_type == CancerType.BREAST:
        relation = member.relation
        age_at_diagnosis = member.age_at_diagnosis
```

#### Enum Usage

**Always use enums from `sentinel.user_input`, never string literals or custom enums:**

```python
# βœ… Correct - using UserInput enums
if user.demographics.sex == Sex.FEMALE:
if member.cancer_type == CancerType.BREAST:
if member.relation == FamilyRelation.MOTHER:

# ❌ Incorrect - string literals
if user.demographics.sex == "female":
if member.cancer_type == "breast":

# ❌ Incorrect - custom enums
if user.demographics.sex == MyCustomSex.FEMALE:
```

**Important**: All risk models must use the same centralized enums from `UserInput`. If a required enum doesn't exist in `UserInput`, you must:
1. **Extend UserInput** by adding the new enum to `src/sentinel/user_input.py`
2. **Never create model-specific enums** - this prevents divergence between models
3. **Update all models** to use the new centralized enum

This ensures all risk models share the same data structure and prevents fragmentation.

#### Extending UserInput

When a risk model needs fields or enums that don't exist in `UserInput`:

1. **Add to UserInput**: Extend `src/sentinel/user_input.py` with new fields/enums
2. **Update all models**: Ensure all existing models can handle the new fields (use `| None` for optional fields)
3. **Never create model-specific structures**: This prevents divergence and fragmentation
4. **Test thoroughly**: Add tests for new fields in `tests/test_user_input.py`

Example of extending UserInput:
```python
# In src/sentinel/user_input.py
class ChronicCondition(str, Enum):
    # ... existing values
    NEW_CONDITION = "new_condition"  # Add new enum value

class PersonalMedicalHistory(StrictBaseModel):
    # ... existing fields
    new_field: float | None = Field(None, description="New field description")
```

#### Testing Requirements

Create comprehensive test files with:
- **Ground Truth Validation**: Test against known reference values
- **Input Validation**: Test that invalid inputs raise `ValueError`
- **Edge Cases**: Test boundary conditions and edge cases
- **Inapplicable Cases**: Test cases where model should return "N/A"

Example test structure:

```python
import pytest
from sentinel.user_input import UserInput, Demographics, Sex
from sentinel.risk_models import YourRiskModel

GROUND_TRUTH_CASES = [
    {
        "name": "test_case_name",
        "input": UserInput(
            demographics=Demographics(
                age_years=40,
                sex=Sex.FEMALE,
                # ... other fields
            ),
            # ... rest of input
        ),
        "expected": 1.5,  # Expected risk percentage
    },
    # ... more test cases
]

class TestYourRiskModel:
    @pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda x: x["name"])
    def test_ground_truth_validation(self, case):
        """Test against ground truth results."""
        user_input = case["input"]
        expected_risk = case["expected"]

        actual_risk_str = self.model.compute_score(user_input)
        actual_risk = float(actual_risk_str)
        assert actual_risk == pytest.approx(expected_risk, abs=0.01)
```

#### Migration Checklist

When adapting an existing risk model to the new structure:

- [ ] Update imports to use new `user_input` module
- [ ] Add `REQUIRED_INPUTS` with Pydantic validation
- [ ] Refactor `compute_score` to use new `UserInput` structure
- [ ] Replace string literals with enums
- [ ] Update parameter extraction logic
- [ ] Add input validation at start of `compute_score`
- [ ] Update all test cases to use new `UserInput` structure
- [ ] Run full test suite to ensure 100% pass rate
- [ ] Run pre-commit hooks to ensure code quality

## LLM and Code Assistant Guidelines

When generating or modifying code, AI assistants MUST:

### Mandatory Rules
- Follow ALL guidelines in this document without exception
- Never use forbidden constructs (`os.path`, `Optional[]`, `List[]`, `print()`, broad `except:`)
- Never add decorative comment banners or unnecessary formatting
- Always generate clean, modular, statically typed code

### Code Generation Standards
- Prefer clarity and simplicity over cleverness
- Use modern Python type hints exclusively
- Include comprehensive docstrings for non-trivial functions
- Ensure all examples compile, type-check, and pass linting

### Verification
All generated code must:
- Pass `ruff format` and `ruff check`
- Include proper type hints
- Use `pathlib.Path` for all file operations
- Use `loguru` for logging
- Follow the Variable Naming guidelines

## Important Note for Developers

When making changes to the project, ensure that the following files are updated to reflect the changes:

- `README.md`
- `AGENTS.md`
- `GEMINI.md`

For additional implementation details, refer to the existing risk model implementations in `src/sentinel/risk_models/`.