Spaces:
Runtime error
Runtime error
File size: 15,824 Bytes
0451e1c 8018595 0451e1c 8018595 3fc6f6d 0451e1c 3fc6f6d 0451e1c 3fc6f6d 8018595 0451e1c 8018595 0451e1c 8018595 0451e1c 8018595 0451e1c 8018595 0451e1c 8018595 0451e1c 8018595 0451e1c 8018595 0ba176c f6b7a59 8018595 f6b7a59 8018595 0ba176c f6b7a59 0ba176c 8018595 0451e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Repository Guidelines
This repository contains the LLM-based Cancer Risk Assessment Assistant.
## Core Technologies
- **FastAPI** for the web framework
- **LangChain** for LLM orchestration
- **uv** for environment and dependency management
- **hydra:** for configuration management
## Development Setup
### Environment Setup
- Create the virtual environment (at '.venv') with `uv sync`.
- As the repository uses uv, the uv should be used to run all commands, e.g., "uv run python ..." NOT "python ...".
### Running Commands
- **Streamlit Interface**: `uv run streamlit run apps/streamlit_ui/main.py`
- **CLI Demo**: `uv run python apps/cli/main.py`
- **Tests**: `uv run pytest`
## Coding Standards
### Coding Philosophy
- Write simple, explicit, modular code
- Prioritize clarity over cleverness
- Prefer small pure functions over large ones
- Return early instead of nesting deeply
- Favor functions over classes unless essential
- Favor simple replication over heavy abstraction
- Keep comments short and only where code isn't self-explanatory
- Avoid premature optimization or over-engineering
### Variable Naming
- **Avoid single-letter variable names** (x, y, i, j, e, t, f, m, c, ct) in favor of descriptive names.
- **Avoid abbreviations** (fh, ct, w, h) in favor of full descriptive names.
- Use context-specific names for loop indices based on what you're iterating over:
- `item_index` for general enumeration
- `line_index` for text line iteration
- `column_index` for table/array column iteration
- `row_index` for table/array row iteration
- Use descriptive names for comprehensions and iterations:
- `item` instead of `i` for general items
- `element` instead of `e` for list elements
- `key` instead of `k` for dictionary keys
- `value` instead of `v` for dictionary values
- Use descriptive names for coordinates and positions:
- `x_position`, `y_position` instead of `x`, `y`
- `width`, `height` instead of `w`, `h`
- Use descriptive names for data structures:
- `file_path` instead of `f` for file paths
- `model` instead of `m` for model instances
- `user` instead of `u` for user objects
**Examples from recent refactoring:**
- `for i, ref in enumerate(references)` β `for ref_index, ref in enumerate(references)`
- `for e in examples` β `for example in examples`
- `for m in models` β `for model in models`
- `x = pdf.get_x()` β `x_position = pdf.get_x()`
- `fh = family_history` β `family_history = family_history` (avoid abbreviations)
- `ct for ct in cancer_types` β `cancer_type for cancer_type in cancer_types`
- `f in MODELS_DIR.glob` β `file_path in MODELS_DIR.glob`
- `t in field_type.__args__` β `type_arg in field_type.__args__`
### Path Handling
- **Always use `pathlib.Path`** for all file I/O, joining, and globbing
- Accept `Path | str` at function boundaries; normalize to `Path` internally
- **Never use `os.path`** for path operations
Example:
```python
from pathlib import Path
def read_text(file: Path | str) -> str:
path = Path(file)
return path.read_text(encoding="utf-8")
```
### Type Hints and Modern Python
- **Use modern type hints**: `list`, `dict`, `tuple`, `set` (not `List`, `Dict`, etc.)
- **Use PEP 604 unions**: `A | B` (not `Union[A, B]` or `Optional[A]`)
- Import from `typing` only when necessary (`TypedDict`, `Literal`, `Annotated`, etc.)
- **Never use** `from __future__ import annotations`
- Add type hints to all public functions and methods
- Prefer precise types (`float`, `Path`, etc.) over generic ones
- If `Any` is required, isolate and document why
### Import Management
- **Place all imports at the top of the file**, never inside functions or classes
- Group imports in three sections with blank lines between:
1. Standard library imports
2. Third-party library imports
3. Local/project imports
- This improves performance (imports loaded once) and code readability
### Error Handling and Logging
- **Use `try/except` only for I/O or external APIs**
- Catch specific exceptions only (never broad `except:`)
- Raise clear, actionable error messages
- **Use `loguru`** for logging, never `print()` in production code
Example:
```python
from loguru import logger
try:
data = Path(file_path).read_text(encoding="utf-8")
except FileNotFoundError as error:
logger.error(f"Configuration file not found: {file_path}")
raise ValueError(f"Missing required config: {file_path}") from error
```
### Docstring Standards
- **Use Google-style docstrings** for all public functions and classes
- Do NOT include type hints in docstrings (they're in the signature)
- Describe behavior, invariants, side effects, and edge cases
- Include examples for complex functions
- Avoid verbose docstrings for simple, self-explanatory functions
## Testing
### Testing Philosophy
- Write meaningful tests that verify core functionality and prevent regressions
- Use `pytest` as the testing framework
- Tests go under `tests/` mirroring the source layout
- Test both valid and invalid input scenarios
### Test Types
- **Unit tests**: Small, deterministic, one concept per test
- **Integration tests**: Real workflows or reference comparisons with external systems
- Use `pytest.mark` to tag slow or manual tests
### Test Coverage Requirements
- Ensure comprehensive test coverage for all risk models
- **Ground Truth Validation**: Test against known reference values
- **Input Validation**: Test that invalid inputs raise `ValueError`
- **Edge Cases**: Test boundary conditions
- **Inapplicable Cases**: Test when models should return "N/A"
### Running Tests
```bash
uv run pytest # Run all tests
uv run pytest -q # Quiet mode
uv run pytest -v # Verbose mode
uv run pytest tests/test_risk_models/ # Specific directory
```
### Pre-Submission Checklist
Before committing code, verify:
1. β
Run `uv run pytest -q` (all tests pass)
2. β
Run `pre-commit run --all-files` (all hooks pass)
3. β
No `print()` statements in production code
4. β
No broad `except:` blocks
5. β
All type hints present on public functions
6. β
File paths use `pathlib.Path`
7. β
Logging uses `loguru`
## Risk Models
### Implemented Models
The assistant currently includes the following built-in risk calculators:
- **Gail** - Breast cancer risk
- **Claus** - Breast cancer risk based on family history
- **Tyrer-Cuzick** - Breast cancer risk (IBIS model)
- **BOADICEA** - Breast and ovarian cancer risk (via CanRisk API)
- **PLCOm2012** - Lung cancer risk
- **LLPi** - Liverpool Lung Project improved model for lung cancer risk (8.7-year prediction)
- **CRC-PRO** - Colorectal cancer risk
- **PCPT** - Prostate cancer risk
- **Extended PBCG** - Prostate cancer risk (extended model)
- **Prostate Mortality** - Prostate cancer-specific mortality prediction
- **MRAT** - Melanoma risk (5-year prediction)
- **aMAP** - Hepatocellular carcinoma (liver cancer) risk
- **QCancer** - Multi-site cancer differential
Additional models should follow the interfaces under `src/sentinel/risk_models`.
### Risk Model Implementation Guide
#### Base Architecture
All risk models must inherit from `RiskModel` in `src/sentinel/risk_models/base.py`:
```python
from sentinel.risk_models.base import RiskModel
class YourRiskModel(RiskModel):
def __init__(self):
super().__init__("your_model_name")
```
#### Required Methods
Every risk model must implement these abstract methods:
```python
def compute_score(self, user: UserInput) -> str:
"""Compute the risk score for a given user profile.
Args:
user: The user profile containing demographics, medical history, etc.
Returns:
str: Risk percentage as a string or an N/A message if inapplicable.
Raises:
ValueError: If required inputs are missing or invalid.
"""
def cancer_type(self) -> str:
"""Return the cancer type this model assesses."""
return "breast" # or "lung", "prostate", etc.
def description(self) -> str:
"""Return a detailed description of the model."""
def interpretation(self) -> str:
"""Return guidance on how to interpret the results."""
def references(self) -> list[str]:
"""Return list of reference citations."""
```
#### UserInput Structure
**All risk models must use the centralized `UserInput` structure** - this is the single source of truth for all data types and enums. The `UserInput` class follows a hierarchical structure:
```
UserInput
βββ demographics: Demographics
β βββ age_years: int
β βββ sex: Sex (enum)
β βββ ethnicity: Ethnicity | None
β βββ anthropometrics: Anthropometrics
β βββ height_cm: float | None
β βββ weight_kg: float | None
βββ lifestyle: Lifestyle
β βββ smoking: SmokingHistory
β βββ alcohol: AlcoholConsumption
βββ personal_medical_history: PersonalMedicalHistory
β βββ chronic_conditions: list[ChronicCondition]
β βββ previous_cancers: list[CancerType]
β βββ genetic_mutations: list[GeneticMutation]
β βββ tyrer_cuzick_polygenic_risk_score: float | None
βββ female_specific: FemaleSpecific | None
β βββ menstrual: MenstrualHistory
β βββ parity: ParityHistory
β βββ breast_health: BreastHealthHistory
βββ symptoms: list[SymptomEntry]
βββ family_history: list[FamilyMemberCancer]
```
#### REQUIRED_INPUTS Specification
Every risk model must define a `REQUIRED_INPUTS` class attribute using Pydantic's `Annotated` types with `Field` constraints:
```python
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
"demographics.age_years": (Annotated[int, Field(ge=18, le=100)], True),
"demographics.sex": (Sex, True),
"demographics.ethnicity": (Ethnicity | None, False),
"family_history": (list, False), # list[FamilyMemberCancer]
"symptoms": (list, False), # list[SymptomEntry]
}
```
#### Input Validation
Every `compute_score` method must start with input validation:
```python
def compute_score(self, user: UserInput) -> str:
"""Compute the risk score for a given user profile."""
# Validate inputs first
is_valid, errors = self.validate_inputs(user)
if not is_valid:
raise ValueError(f"Invalid inputs for {self.name}: {'; '.join(errors)}")
# Model-specific validation
if user.demographics.sex != Sex.FEMALE:
return "N/A: Model is only applicable to female patients."
# Continue with model-specific logic...
```
#### Data Access Patterns
```python
# Demographics
age = user.demographics.age_years
sex = user.demographics.sex
ethnicity = user.demographics.ethnicity
# Female-specific data
if user.female_specific is not None:
menarche_age = user.female_specific.menstrual.age_at_menarche
num_births = user.female_specific.parity.num_live_births
# Family history
for member in user.family_history:
if member.cancer_type == CancerType.BREAST:
relation = member.relation
age_at_diagnosis = member.age_at_diagnosis
```
#### Enum Usage
**Always use enums from `sentinel.user_input`, never string literals or custom enums:**
```python
# β
Correct - using UserInput enums
if user.demographics.sex == Sex.FEMALE:
if member.cancer_type == CancerType.BREAST:
if member.relation == FamilyRelation.MOTHER:
# β Incorrect - string literals
if user.demographics.sex == "female":
if member.cancer_type == "breast":
# β Incorrect - custom enums
if user.demographics.sex == MyCustomSex.FEMALE:
```
**Important**: All risk models must use the same centralized enums from `UserInput`. If a required enum doesn't exist in `UserInput`, you must:
1. **Extend UserInput** by adding the new enum to `src/sentinel/user_input.py`
2. **Never create model-specific enums** - this prevents divergence between models
3. **Update all models** to use the new centralized enum
This ensures all risk models share the same data structure and prevents fragmentation.
#### Extending UserInput
When a risk model needs fields or enums that don't exist in `UserInput`:
1. **Add to UserInput**: Extend `src/sentinel/user_input.py` with new fields/enums
2. **Update all models**: Ensure all existing models can handle the new fields (use `| None` for optional fields)
3. **Never create model-specific structures**: This prevents divergence and fragmentation
4. **Test thoroughly**: Add tests for new fields in `tests/test_user_input.py`
Example of extending UserInput:
```python
# In src/sentinel/user_input.py
class ChronicCondition(str, Enum):
# ... existing values
NEW_CONDITION = "new_condition" # Add new enum value
class PersonalMedicalHistory(StrictBaseModel):
# ... existing fields
new_field: float | None = Field(None, description="New field description")
```
#### Testing Requirements
Create comprehensive test files with:
- **Ground Truth Validation**: Test against known reference values
- **Input Validation**: Test that invalid inputs raise `ValueError`
- **Edge Cases**: Test boundary conditions and edge cases
- **Inapplicable Cases**: Test cases where model should return "N/A"
Example test structure:
```python
import pytest
from sentinel.user_input import UserInput, Demographics, Sex
from sentinel.risk_models import YourRiskModel
GROUND_TRUTH_CASES = [
{
"name": "test_case_name",
"input": UserInput(
demographics=Demographics(
age_years=40,
sex=Sex.FEMALE,
# ... other fields
),
# ... rest of input
),
"expected": 1.5, # Expected risk percentage
},
# ... more test cases
]
class TestYourRiskModel:
@pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda x: x["name"])
def test_ground_truth_validation(self, case):
"""Test against ground truth results."""
user_input = case["input"]
expected_risk = case["expected"]
actual_risk_str = self.model.compute_score(user_input)
actual_risk = float(actual_risk_str)
assert actual_risk == pytest.approx(expected_risk, abs=0.01)
```
#### Migration Checklist
When adapting an existing risk model to the new structure:
- [ ] Update imports to use new `user_input` module
- [ ] Add `REQUIRED_INPUTS` with Pydantic validation
- [ ] Refactor `compute_score` to use new `UserInput` structure
- [ ] Replace string literals with enums
- [ ] Update parameter extraction logic
- [ ] Add input validation at start of `compute_score`
- [ ] Update all test cases to use new `UserInput` structure
- [ ] Run full test suite to ensure 100% pass rate
- [ ] Run pre-commit hooks to ensure code quality
## LLM and Code Assistant Guidelines
When generating or modifying code, AI assistants MUST:
### Mandatory Rules
- Follow ALL guidelines in this document without exception
- Never use forbidden constructs (`os.path`, `Optional[]`, `List[]`, `print()`, broad `except:`)
- Never add decorative comment banners or unnecessary formatting
- Always generate clean, modular, statically typed code
### Code Generation Standards
- Prefer clarity and simplicity over cleverness
- Use modern Python type hints exclusively
- Include comprehensive docstrings for non-trivial functions
- Ensure all examples compile, type-check, and pass linting
### Verification
All generated code must:
- Pass `ruff format` and `ruff check`
- Include proper type hints
- Use `pathlib.Path` for all file operations
- Use `loguru` for logging
- Follow the Variable Naming guidelines
## Important Note for Developers
When making changes to the project, ensure that the following files are updated to reflect the changes:
- `README.md`
- `AGENTS.md`
- `GEMINI.md`
For additional implementation details, refer to the existing risk model implementations in `src/sentinel/risk_models/`.
|