Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import math, json, random, time, threading
|
| 3 |
from dataclasses import dataclass, asdict
|
| 4 |
from typing import List, Tuple, Dict, Any, Optional
|
|
@@ -6,33 +6,32 @@ from functools import lru_cache
|
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import plotly.graph_objs as go
|
|
|
|
| 9 |
import gradio as gr
|
| 10 |
import pandas as pd
|
| 11 |
|
| 12 |
-
# Proxy fitness deps
|
| 13 |
import torch
|
| 14 |
import torch.nn as nn
|
| 15 |
import torch.optim as optim
|
| 16 |
|
| 17 |
from data_utils import load_piqa, load_hellaswag, hash_vectorize
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
# UX THEME & STYLES (cleaner, pro)
|
| 21 |
-
# =========================
|
| 22 |
CUSTOM_CSS = """
|
| 23 |
-
:root { --radius
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
}
|
| 29 |
-
.gr-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
"""
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
# GENOME & EVOLUTION CORE
|
| 35 |
-
# =========================
|
| 36 |
@dataclass
|
| 37 |
class Genome:
|
| 38 |
d_model: int
|
|
@@ -43,7 +42,7 @@ class Genome:
|
|
| 43 |
dropout: float
|
| 44 |
species: int = 0
|
| 45 |
fitness: float = float("inf")
|
| 46 |
-
acc: Optional[float] = None
|
| 47 |
|
| 48 |
def vector(self) -> np.ndarray:
|
| 49 |
return np.array([
|
|
@@ -91,9 +90,7 @@ def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
|
|
| 91 |
acc = None
|
| 92 |
)
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
# PROXY FITNESS (Phase 2a)
|
| 96 |
-
# =========================
|
| 97 |
def rastrigin(x: np.ndarray) -> float:
|
| 98 |
A, n = 10.0, x.shape[0]
|
| 99 |
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
|
|
@@ -116,14 +113,11 @@ def _cached_dataset(name: str):
|
|
| 116 |
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42)
|
| 117 |
return None
|
| 118 |
|
| 119 |
-
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str = "cpu")
|
| 120 |
-
"""Returns (fitness, accuracy or None)."""
|
| 121 |
data = _cached_dataset(dataset_name)
|
| 122 |
if data is None:
|
| 123 |
-
# Demo path handled elsewhere
|
| 124 |
v = genome.vector() * 2 - 1
|
| 125 |
return float(rastrigin(v)), None
|
| 126 |
-
|
| 127 |
Xtr_txt, ytr, Xva_txt, yva = data
|
| 128 |
nfeat = 4096
|
| 129 |
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
|
|
@@ -139,8 +133,7 @@ def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device:
|
|
| 139 |
lossf = nn.BCEWithLogitsLoss()
|
| 140 |
|
| 141 |
model.train()
|
| 142 |
-
steps, bs = 120, 256
|
| 143 |
-
N = Xtr_t.size(0)
|
| 144 |
for _ in range(steps):
|
| 145 |
idx = torch.randint(0, N, (bs,))
|
| 146 |
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device)
|
|
@@ -169,7 +162,7 @@ def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device:
|
|
| 169 |
fitness = (1.0 - acc) + parsimony + noise
|
| 170 |
return float(max(0.0, min(1.5, fitness))), float(acc)
|
| 171 |
|
| 172 |
-
def evaluate_genome(genome: Genome, dataset: str, explore: float)
|
| 173 |
if dataset == "Demo (Surrogate)":
|
| 174 |
v = genome.vector() * 2 - 1
|
| 175 |
base = rastrigin(v)
|
|
@@ -180,23 +173,30 @@ def evaluate_genome(genome: Genome, dataset: str, explore: float) -> Tuple[float
|
|
| 180 |
return _train_eval_proxy(genome, "PIQA", explore)
|
| 181 |
if dataset.startswith("HellaSwag"):
|
| 182 |
return _train_eval_proxy(genome, "HellaSwag", explore)
|
| 183 |
-
# fallback
|
| 184 |
v = genome.vector() * 2 - 1
|
| 185 |
return float(rastrigin(v)), None
|
| 186 |
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
|
|
|
| 190 |
def sphere_project(points: np.ndarray) -> np.ndarray:
|
| 191 |
rng = np.random.RandomState(42)
|
| 192 |
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
|
| 193 |
Y = points @ W
|
| 194 |
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
|
| 195 |
-
return (Y / norms) * 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
|
| 198 |
species = np.array([g.species for g in genomes])
|
| 199 |
-
|
| 200 |
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout,
|
| 201 |
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)]
|
| 202 |
for g in genomes], dtype=np.float32)
|
|
@@ -204,11 +204,11 @@ def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int
|
|
| 204 |
scatter = go.Scatter3d(
|
| 205 |
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
|
| 206 |
mode='markers',
|
| 207 |
-
marker=dict(size=
|
| 208 |
customdata=custom,
|
| 209 |
hovertemplate=(
|
| 210 |
-
"
|
| 211 |
-
"layers=%{customdata[1]:.0f} · heads=%{customdata[2]:.0f}<br>"
|
| 212 |
"ffn_mult=%{customdata[3]:.1f} · mem=%{customdata[4]:.0f} · drop=%{customdata[5]:.2f}<br>"
|
| 213 |
"species=%{customdata[6]:.0f}<br>"
|
| 214 |
"fitness=%{customdata[7]:.4f}<br>"
|
|
@@ -216,46 +216,63 @@ def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int
|
|
| 216 |
)
|
| 217 |
)
|
| 218 |
|
| 219 |
-
#
|
| 220 |
-
u = np.linspace(0, 2*np.pi,
|
| 221 |
-
v = np.linspace(0, np.pi,
|
| 222 |
-
r = 1.
|
| 223 |
xs = r*np.outer(np.cos(u), np.sin(v))
|
| 224 |
ys = r*np.outer(np.sin(u), np.sin(v))
|
| 225 |
zs = r*np.outer(np.ones_like(u), np.cos(v))
|
| 226 |
-
sphere = go.Surface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
layout = go.Layout(
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
showlegend=False,
|
| 233 |
-
height=
|
|
|
|
| 234 |
)
|
| 235 |
return go.Figure(data=[sphere, scatter], layout=layout)
|
| 236 |
|
| 237 |
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure:
|
| 238 |
-
# history items: (gen, best_fitness, best_acc or NaN)
|
| 239 |
xs = [h[0] for h in history]
|
| 240 |
if metric == "Accuracy":
|
| 241 |
-
ys = [h[2] if (h[2] == h[2]) else None for h in history]
|
| 242 |
title, ylab = "Best Accuracy per Generation", "Accuracy"
|
| 243 |
else:
|
| 244 |
ys = [h[1] for h in history]
|
| 245 |
-
title, ylab = "Best Fitness per Generation", "Fitness (
|
| 246 |
-
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers")])
|
| 247 |
-
fig.update_layout(
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
return fig
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
def approx_params(g: Genome) -> int:
|
| 252 |
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
|
| 253 |
total = per_layer * g.n_layers + 1000 * g.memory_tokens
|
| 254 |
return int(total)
|
| 255 |
|
| 256 |
-
#
|
| 257 |
-
# ORCHESTRATOR
|
| 258 |
-
# =========================
|
| 259 |
class EvoRunner:
|
| 260 |
def __init__(self):
|
| 261 |
self.lock = threading.Lock()
|
|
@@ -269,25 +286,22 @@ class EvoRunner:
|
|
| 269 |
self.running = True
|
| 270 |
|
| 271 |
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
|
| 272 |
-
# initial eval
|
| 273 |
for g in pop:
|
| 274 |
fit, acc = evaluate_genome(g, dataset, explore)
|
| 275 |
g.fitness, g.acc = fit, acc
|
| 276 |
|
| 277 |
-
history: List[Tuple[int,float,float]] = []
|
| 278 |
best_overall: Optional[Genome] = None
|
| 279 |
|
| 280 |
for gen in range(1, generations+1):
|
| 281 |
if self.stop_flag: break
|
| 282 |
|
| 283 |
-
# Selection (tournament)
|
| 284 |
k = max(2, int(2 + exploit * 5))
|
| 285 |
parents = []
|
| 286 |
for _ in range(pop_size):
|
| 287 |
sample = rng.sample(pop, k=k)
|
| 288 |
parents.append(min(sample, key=lambda x: x.fitness))
|
| 289 |
|
| 290 |
-
# Reproduce
|
| 291 |
children = []
|
| 292 |
for i in range(0, pop_size, 2):
|
| 293 |
a = parents[i]; b = parents[(i+1) % pop_size]
|
|
@@ -296,30 +310,25 @@ class EvoRunner:
|
|
| 296 |
children.extend([child1, child2])
|
| 297 |
children = children[:pop_size]
|
| 298 |
|
| 299 |
-
# Evaluate children
|
| 300 |
for c in children:
|
| 301 |
fit, acc = evaluate_genome(c, dataset, explore)
|
| 302 |
c.fitness, c.acc = fit, acc
|
| 303 |
|
| 304 |
-
# Elitism
|
| 305 |
elite_n = max(1, pop_size // 10)
|
| 306 |
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n]
|
| 307 |
-
|
| 308 |
-
# Next pop
|
| 309 |
pop = sorted(children, key=lambda x: x.fitness)
|
| 310 |
pop[-elite_n:] = elites
|
| 311 |
|
| 312 |
best = min(pop, key=lambda x: x.fitness)
|
| 313 |
-
if best_overall is None or best.fitness < best_overall.fitness:
|
| 314 |
-
best_overall = best
|
| 315 |
|
| 316 |
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan"))))
|
| 317 |
|
| 318 |
-
# Viz snapshot
|
| 319 |
P = np.stack([g.vector() for g in pop], axis=0)
|
| 320 |
P3 = sphere_project(P)
|
| 321 |
sphere_fig = make_sphere_figure(P3, pop, gen)
|
| 322 |
hist_fig = make_history_figure(history, metric_choice)
|
|
|
|
| 323 |
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
|
| 324 |
top_table = [
|
| 325 |
{
|
|
@@ -340,8 +349,8 @@ class EvoRunner:
|
|
| 340 |
|
| 341 |
with self.lock:
|
| 342 |
self.state = {
|
| 343 |
-
"
|
| 344 |
-
"
|
| 345 |
"top": top_table,
|
| 346 |
"best": best_card,
|
| 347 |
"gen": gen,
|
|
@@ -350,21 +359,17 @@ class EvoRunner:
|
|
| 350 |
}
|
| 351 |
|
| 352 |
time.sleep(max(0.0, pace_ms/1000.0))
|
| 353 |
-
|
| 354 |
self.running = False
|
| 355 |
|
| 356 |
def start(self, *args, **kwargs):
|
| 357 |
if self.running: return
|
| 358 |
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
|
| 359 |
t.start()
|
| 360 |
-
|
| 361 |
def stop(self): self.stop_flag = True
|
| 362 |
|
| 363 |
runner = EvoRunner()
|
| 364 |
|
| 365 |
-
#
|
| 366 |
-
# UI CALLBACKS
|
| 367 |
-
# =========================
|
| 368 |
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice):
|
| 369 |
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice)
|
| 370 |
return (gr.update(interactive=False), gr.update(interactive=True))
|
|
@@ -376,13 +381,12 @@ def stop_evo():
|
|
| 376 |
def poll_state():
|
| 377 |
with runner.lock:
|
| 378 |
s = runner.state.copy()
|
| 379 |
-
|
| 380 |
-
|
| 381 |
best = s.get("best", {})
|
| 382 |
gen = s.get("gen", 0)
|
| 383 |
dataset = s.get("dataset", "Demo (Surrogate)")
|
| 384 |
top = s.get("top", [])
|
| 385 |
-
# Stats text
|
| 386 |
if best:
|
| 387 |
acc_txt = "—" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}"
|
| 388 |
stats_md = (
|
|
@@ -398,7 +402,7 @@ def poll_state():
|
|
| 398 |
else:
|
| 399 |
stats_md = "Waiting… click **Start Evolution**."
|
| 400 |
df = pd.DataFrame(top)
|
| 401 |
-
return
|
| 402 |
|
| 403 |
def export_snapshot():
|
| 404 |
from json import dumps
|
|
@@ -409,25 +413,19 @@ def export_snapshot():
|
|
| 409 |
f.write(payload)
|
| 410 |
return path
|
| 411 |
|
| 412 |
-
#
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
with gr.Column(elem_id="header-card"):
|
| 417 |
-
gr.Markdown(
|
| 418 |
-
"# Evo Playground — Live Evolution of Transformer Architectures\n"
|
| 419 |
-
"Tune the search, watch the population converge, and track **accuracy** in real time (PIQA/HellaSwag)."
|
| 420 |
-
)
|
| 421 |
|
| 422 |
with gr.Row():
|
| 423 |
-
|
| 424 |
-
with gr.Column(scale=1):
|
| 425 |
with gr.Group():
|
| 426 |
dataset = gr.Dropdown(
|
| 427 |
label="Dataset",
|
| 428 |
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"],
|
| 429 |
value="Demo (Surrogate)",
|
| 430 |
-
info="PIQA/HellaSwag compute real proxy accuracy; Demo
|
| 431 |
)
|
| 432 |
pop = gr.Slider(8, 80, value=24, step=2, label="Population size")
|
| 433 |
gens = gr.Slider(5, 200, value=60, step=1, label="Max generations")
|
|
@@ -442,18 +440,19 @@ with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
|
| 442 |
start = gr.Button("▶ Start Evolution", variant="primary")
|
| 443 |
stop = gr.Button("⏹ Stop", variant="secondary")
|
| 444 |
|
| 445 |
-
with gr.Group(
|
| 446 |
-
stats_md = gr.Markdown("Waiting…", elem_id="stats
|
|
|
|
|
|
|
| 447 |
export_btn = gr.Button("Export Snapshot (JSON)")
|
| 448 |
export_file = gr.File(label="Download snapshot", visible=False)
|
| 449 |
|
| 450 |
-
# RIGHT: Viz + Table
|
| 451 |
with gr.Column(scale=2):
|
| 452 |
-
with gr.Group(
|
| 453 |
-
|
| 454 |
-
with gr.Group(
|
| 455 |
-
|
| 456 |
-
with gr.Group(
|
| 457 |
top_df = gr.Dataframe(label="Top Genomes (live)", wrap=True, interactive=False)
|
| 458 |
|
| 459 |
# Wiring
|
|
@@ -461,12 +460,9 @@ with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
|
| 461 |
stop.click(stop_evo, [], [start, stop])
|
| 462 |
export_btn.click(export_snapshot, [], [export_file])
|
| 463 |
|
| 464 |
-
# Initial paint
|
| 465 |
-
demo.load(poll_state, None, [
|
| 466 |
-
|
| 467 |
-
# Continuous polling (every 0.7s)
|
| 468 |
-
poller = gr.Timer(0.7)
|
| 469 |
-
poller.tick(poll_state, None, [sphere_plot, hist_plot, stats_md, top_df])
|
| 470 |
|
| 471 |
if __name__ == "__main__":
|
| 472 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py — Minimal, pro UI with big transparent sphere and clean hover
|
| 2 |
import math, json, random, time, threading
|
| 3 |
from dataclasses import dataclass, asdict
|
| 4 |
from typing import List, Tuple, Dict, Any, Optional
|
|
|
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import plotly.graph_objs as go
|
| 9 |
+
import plotly.io as pio
|
| 10 |
import gradio as gr
|
| 11 |
import pandas as pd
|
| 12 |
|
|
|
|
| 13 |
import torch
|
| 14 |
import torch.nn as nn
|
| 15 |
import torch.optim as optim
|
| 16 |
|
| 17 |
from data_utils import load_piqa, load_hellaswag, hash_vectorize
|
| 18 |
|
| 19 |
+
# ---------- Minimal style ----------
|
|
|
|
|
|
|
| 20 |
CUSTOM_CSS = """
|
| 21 |
+
:root { --radius: 14px; --fg:#0f172a; --muted:#64748b; --line:#e5e7eb; }
|
| 22 |
+
* { font-family: Inter, ui-sans-serif, system-ui, -apple-system, Segoe UI, Roboto, Helvetica Neue, Arial, "Noto Sans", "Apple Color Emoji", "Segoe UI Emoji"; }
|
| 23 |
+
.gradio-container { max-width: 1180px !important; }
|
| 24 |
+
#header { border-radius: var(--radius); padding: 8px 6px; }
|
| 25 |
+
h1, h2, h3, .gr-markdown { color: var(--fg); }
|
| 26 |
+
.gr-button { border-radius: 10px; }
|
| 27 |
+
.controls .gr-group, .panel { border: 1px solid var(--line); border-radius: var(--radius); }
|
| 28 |
+
.panel { padding: 10px; }
|
| 29 |
+
#stats { font-weight: 300; color: var(--fg); }
|
| 30 |
+
#stats strong { font-weight: 500; }
|
| 31 |
+
.small { font-size: 13px; color: var(--muted); }
|
| 32 |
"""
|
| 33 |
|
| 34 |
+
# ---------- Genome ----------
|
|
|
|
|
|
|
| 35 |
@dataclass
|
| 36 |
class Genome:
|
| 37 |
d_model: int
|
|
|
|
| 42 |
dropout: float
|
| 43 |
species: int = 0
|
| 44 |
fitness: float = float("inf")
|
| 45 |
+
acc: Optional[float] = None
|
| 46 |
|
| 47 |
def vector(self) -> np.ndarray:
|
| 48 |
return np.array([
|
|
|
|
| 90 |
acc = None
|
| 91 |
)
|
| 92 |
|
| 93 |
+
# ---------- Proxy fitness ----------
|
|
|
|
|
|
|
| 94 |
def rastrigin(x: np.ndarray) -> float:
|
| 95 |
A, n = 10.0, x.shape[0]
|
| 96 |
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
|
|
|
|
| 113 |
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42)
|
| 114 |
return None
|
| 115 |
|
| 116 |
+
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str = "cpu"):
|
|
|
|
| 117 |
data = _cached_dataset(dataset_name)
|
| 118 |
if data is None:
|
|
|
|
| 119 |
v = genome.vector() * 2 - 1
|
| 120 |
return float(rastrigin(v)), None
|
|
|
|
| 121 |
Xtr_txt, ytr, Xva_txt, yva = data
|
| 122 |
nfeat = 4096
|
| 123 |
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
|
|
|
|
| 133 |
lossf = nn.BCEWithLogitsLoss()
|
| 134 |
|
| 135 |
model.train()
|
| 136 |
+
steps, bs, N = 120, 256, Xtr_t.size(0)
|
|
|
|
| 137 |
for _ in range(steps):
|
| 138 |
idx = torch.randint(0, N, (bs,))
|
| 139 |
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device)
|
|
|
|
| 162 |
fitness = (1.0 - acc) + parsimony + noise
|
| 163 |
return float(max(0.0, min(1.5, fitness))), float(acc)
|
| 164 |
|
| 165 |
+
def evaluate_genome(genome: Genome, dataset: str, explore: float):
|
| 166 |
if dataset == "Demo (Surrogate)":
|
| 167 |
v = genome.vector() * 2 - 1
|
| 168 |
base = rastrigin(v)
|
|
|
|
| 173 |
return _train_eval_proxy(genome, "PIQA", explore)
|
| 174 |
if dataset.startswith("HellaSwag"):
|
| 175 |
return _train_eval_proxy(genome, "HellaSwag", explore)
|
|
|
|
| 176 |
v = genome.vector() * 2 - 1
|
| 177 |
return float(rastrigin(v)), None
|
| 178 |
|
| 179 |
+
# ---------- Viz helpers (bigger, transparent sphere) ----------
|
| 180 |
+
PALETTE = ["#111827", "#334155", "#475569", "#64748b", "#94a3b8"] # muted grayscale/blue
|
| 181 |
+
BG = "white"
|
| 182 |
+
|
| 183 |
def sphere_project(points: np.ndarray) -> np.ndarray:
|
| 184 |
rng = np.random.RandomState(42)
|
| 185 |
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
|
| 186 |
Y = points @ W
|
| 187 |
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
|
| 188 |
+
return (Y / norms) * 1.2
|
| 189 |
+
|
| 190 |
+
def _species_colors(species: np.ndarray) -> list:
|
| 191 |
+
colors = []
|
| 192 |
+
for s in species:
|
| 193 |
+
c = PALETTE[int(s) % len(PALETTE)]
|
| 194 |
+
colors.append(c)
|
| 195 |
+
return colors
|
| 196 |
|
| 197 |
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
|
| 198 |
species = np.array([g.species for g in genomes])
|
| 199 |
+
colors = _species_colors(species)
|
| 200 |
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout,
|
| 201 |
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)]
|
| 202 |
for g in genomes], dtype=np.float32)
|
|
|
|
| 204 |
scatter = go.Scatter3d(
|
| 205 |
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
|
| 206 |
mode='markers',
|
| 207 |
+
marker=dict(size=6.5, color=colors, opacity=0.92),
|
| 208 |
customdata=custom,
|
| 209 |
hovertemplate=(
|
| 210 |
+
"<b>Genome</b><br>"
|
| 211 |
+
"d_model=%{customdata[0]:.0f} · layers=%{customdata[1]:.0f} · heads=%{customdata[2]:.0f}<br>"
|
| 212 |
"ffn_mult=%{customdata[3]:.1f} · mem=%{customdata[4]:.0f} · drop=%{customdata[5]:.2f}<br>"
|
| 213 |
"species=%{customdata[6]:.0f}<br>"
|
| 214 |
"fitness=%{customdata[7]:.4f}<br>"
|
|
|
|
| 216 |
)
|
| 217 |
)
|
| 218 |
|
| 219 |
+
# Subtle, large sphere
|
| 220 |
+
u = np.linspace(0, 2*np.pi, 72)
|
| 221 |
+
v = np.linspace(0, np.pi, 36)
|
| 222 |
+
r = 1.2
|
| 223 |
xs = r*np.outer(np.cos(u), np.sin(v))
|
| 224 |
ys = r*np.outer(np.sin(u), np.sin(v))
|
| 225 |
zs = r*np.outer(np.ones_like(u), np.cos(v))
|
| 226 |
+
sphere = go.Surface(
|
| 227 |
+
x=xs, y=ys, z=zs,
|
| 228 |
+
opacity=0.08,
|
| 229 |
+
showscale=False,
|
| 230 |
+
colorscale=[[0, "#cbd5e1"], [1, "#cbd5e1"]],
|
| 231 |
+
hoverinfo="skip"
|
| 232 |
+
)
|
| 233 |
|
| 234 |
layout = go.Layout(
|
| 235 |
+
paper_bgcolor=BG, plot_bgcolor=BG,
|
| 236 |
+
title=f"Evo Architecture Sphere — Gen {gen_idx}",
|
| 237 |
+
scene=dict(
|
| 238 |
+
xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False),
|
| 239 |
+
bgcolor=BG
|
| 240 |
+
),
|
| 241 |
+
margin=dict(l=0, r=0, t=36, b=0),
|
| 242 |
showlegend=False,
|
| 243 |
+
height=720,
|
| 244 |
+
font=dict(family="Inter, Arial, sans-serif", size=14)
|
| 245 |
)
|
| 246 |
return go.Figure(data=[sphere, scatter], layout=layout)
|
| 247 |
|
| 248 |
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure:
|
|
|
|
| 249 |
xs = [h[0] for h in history]
|
| 250 |
if metric == "Accuracy":
|
| 251 |
+
ys = [h[2] if (h[2] == h[2]) else None for h in history]
|
| 252 |
title, ylab = "Best Accuracy per Generation", "Accuracy"
|
| 253 |
else:
|
| 254 |
ys = [h[1] for h in history]
|
| 255 |
+
title, ylab = "Best Fitness per Generation", "Fitness (↓ better)"
|
| 256 |
+
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers", line=dict(width=2))])
|
| 257 |
+
fig.update_layout(
|
| 258 |
+
paper_bgcolor=BG, plot_bgcolor=BG,
|
| 259 |
+
title=title, xaxis_title="Generation", yaxis_title=ylab,
|
| 260 |
+
margin=dict(l=30, r=10, t=36, b=30),
|
| 261 |
+
height=340,
|
| 262 |
+
font=dict(family="Inter, Arial, sans-serif", size=14)
|
| 263 |
+
)
|
| 264 |
return fig
|
| 265 |
|
| 266 |
+
def fig_to_html(fig: go.Figure) -> str:
|
| 267 |
+
# Robust Plotly rendering inside Gradio
|
| 268 |
+
return pio.to_html(fig, include_plotlyjs="cdn", full_html=False, config=dict(displaylogo=False))
|
| 269 |
+
|
| 270 |
def approx_params(g: Genome) -> int:
|
| 271 |
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
|
| 272 |
total = per_layer * g.n_layers + 1000 * g.memory_tokens
|
| 273 |
return int(total)
|
| 274 |
|
| 275 |
+
# ---------- Orchestrator ----------
|
|
|
|
|
|
|
| 276 |
class EvoRunner:
|
| 277 |
def __init__(self):
|
| 278 |
self.lock = threading.Lock()
|
|
|
|
| 286 |
self.running = True
|
| 287 |
|
| 288 |
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
|
|
|
|
| 289 |
for g in pop:
|
| 290 |
fit, acc = evaluate_genome(g, dataset, explore)
|
| 291 |
g.fitness, g.acc = fit, acc
|
| 292 |
|
| 293 |
+
history: List[Tuple[int,float,float]] = []
|
| 294 |
best_overall: Optional[Genome] = None
|
| 295 |
|
| 296 |
for gen in range(1, generations+1):
|
| 297 |
if self.stop_flag: break
|
| 298 |
|
|
|
|
| 299 |
k = max(2, int(2 + exploit * 5))
|
| 300 |
parents = []
|
| 301 |
for _ in range(pop_size):
|
| 302 |
sample = rng.sample(pop, k=k)
|
| 303 |
parents.append(min(sample, key=lambda x: x.fitness))
|
| 304 |
|
|
|
|
| 305 |
children = []
|
| 306 |
for i in range(0, pop_size, 2):
|
| 307 |
a = parents[i]; b = parents[(i+1) % pop_size]
|
|
|
|
| 310 |
children.extend([child1, child2])
|
| 311 |
children = children[:pop_size]
|
| 312 |
|
|
|
|
| 313 |
for c in children:
|
| 314 |
fit, acc = evaluate_genome(c, dataset, explore)
|
| 315 |
c.fitness, c.acc = fit, acc
|
| 316 |
|
|
|
|
| 317 |
elite_n = max(1, pop_size // 10)
|
| 318 |
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n]
|
|
|
|
|
|
|
| 319 |
pop = sorted(children, key=lambda x: x.fitness)
|
| 320 |
pop[-elite_n:] = elites
|
| 321 |
|
| 322 |
best = min(pop, key=lambda x: x.fitness)
|
| 323 |
+
if best_overall is None or best.fitness < best_overall.fitness: best_overall = best
|
|
|
|
| 324 |
|
| 325 |
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan"))))
|
| 326 |
|
|
|
|
| 327 |
P = np.stack([g.vector() for g in pop], axis=0)
|
| 328 |
P3 = sphere_project(P)
|
| 329 |
sphere_fig = make_sphere_figure(P3, pop, gen)
|
| 330 |
hist_fig = make_history_figure(history, metric_choice)
|
| 331 |
+
|
| 332 |
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
|
| 333 |
top_table = [
|
| 334 |
{
|
|
|
|
| 349 |
|
| 350 |
with self.lock:
|
| 351 |
self.state = {
|
| 352 |
+
"sphere_html": fig_to_html(sphere_fig),
|
| 353 |
+
"history_html": fig_to_html(hist_fig),
|
| 354 |
"top": top_table,
|
| 355 |
"best": best_card,
|
| 356 |
"gen": gen,
|
|
|
|
| 359 |
}
|
| 360 |
|
| 361 |
time.sleep(max(0.0, pace_ms/1000.0))
|
|
|
|
| 362 |
self.running = False
|
| 363 |
|
| 364 |
def start(self, *args, **kwargs):
|
| 365 |
if self.running: return
|
| 366 |
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
|
| 367 |
t.start()
|
|
|
|
| 368 |
def stop(self): self.stop_flag = True
|
| 369 |
|
| 370 |
runner = EvoRunner()
|
| 371 |
|
| 372 |
+
# ---------- UI callbacks ----------
|
|
|
|
|
|
|
| 373 |
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice):
|
| 374 |
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice)
|
| 375 |
return (gr.update(interactive=False), gr.update(interactive=True))
|
|
|
|
| 381 |
def poll_state():
|
| 382 |
with runner.lock:
|
| 383 |
s = runner.state.copy()
|
| 384 |
+
sphere_html = s.get("sphere_html", "")
|
| 385 |
+
history_html = s.get("history_html", "")
|
| 386 |
best = s.get("best", {})
|
| 387 |
gen = s.get("gen", 0)
|
| 388 |
dataset = s.get("dataset", "Demo (Surrogate)")
|
| 389 |
top = s.get("top", [])
|
|
|
|
| 390 |
if best:
|
| 391 |
acc_txt = "—" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}"
|
| 392 |
stats_md = (
|
|
|
|
| 402 |
else:
|
| 403 |
stats_md = "Waiting… click **Start Evolution**."
|
| 404 |
df = pd.DataFrame(top)
|
| 405 |
+
return sphere_html, history_html, stats_md, df
|
| 406 |
|
| 407 |
def export_snapshot():
|
| 408 |
from json import dumps
|
|
|
|
| 413 |
f.write(payload)
|
| 414 |
return path
|
| 415 |
|
| 416 |
+
# ---------- Build UI (minimal layout) ----------
|
| 417 |
+
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
| 418 |
+
with gr.Column(elem_id="header"):
|
| 419 |
+
gr.Markdown("## Evo Playground — Minimal Live Evolution (PIQA / HellaSwag accuracy)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
|
| 421 |
with gr.Row():
|
| 422 |
+
with gr.Column(scale=1, elem_classes=["controls"]):
|
|
|
|
| 423 |
with gr.Group():
|
| 424 |
dataset = gr.Dropdown(
|
| 425 |
label="Dataset",
|
| 426 |
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"],
|
| 427 |
value="Demo (Surrogate)",
|
| 428 |
+
info="PIQA/HellaSwag compute real proxy accuracy; Demo is a fast surrogate."
|
| 429 |
)
|
| 430 |
pop = gr.Slider(8, 80, value=24, step=2, label="Population size")
|
| 431 |
gens = gr.Slider(5, 200, value=60, step=1, label="Max generations")
|
|
|
|
| 440 |
start = gr.Button("▶ Start Evolution", variant="primary")
|
| 441 |
stop = gr.Button("⏹ Stop", variant="secondary")
|
| 442 |
|
| 443 |
+
with gr.Group(elem_classes=["panel"]):
|
| 444 |
+
stats_md = gr.Markdown("Waiting…", elem_id="stats")
|
| 445 |
+
|
| 446 |
+
with gr.Group(elem_classes=["panel"]):
|
| 447 |
export_btn = gr.Button("Export Snapshot (JSON)")
|
| 448 |
export_file = gr.File(label="Download snapshot", visible=False)
|
| 449 |
|
|
|
|
| 450 |
with gr.Column(scale=2):
|
| 451 |
+
with gr.Group(elem_classes=["panel"]):
|
| 452 |
+
sphere_html = gr.HTML()
|
| 453 |
+
with gr.Group(elem_classes=["panel"]):
|
| 454 |
+
hist_html = gr.HTML()
|
| 455 |
+
with gr.Group(elem_classes=["panel"]):
|
| 456 |
top_df = gr.Dataframe(label="Top Genomes (live)", wrap=True, interactive=False)
|
| 457 |
|
| 458 |
# Wiring
|
|
|
|
| 460 |
stop.click(stop_evo, [], [start, stop])
|
| 461 |
export_btn.click(export_snapshot, [], [export_file])
|
| 462 |
|
| 463 |
+
# Initial paint + polling
|
| 464 |
+
demo.load(poll_state, None, [sphere_html, hist_html, stats_md, top_df])
|
| 465 |
+
gr.Timer(0.7).tick(poll_state, None, [sphere_html, hist_html, stats_md, top_df])
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
if __name__ == "__main__":
|
| 468 |
demo.launch()
|