Spaces:
Runtime error
Runtime error
| # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin | |
| from diffusers.models.autoencoders import AutoencoderKL | |
| from diffusers.models.transformers import FluxTransformer2DModel | |
| from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| from os.path import expanduser # pylint: disable=import-outside-toplevel | |
| from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel | |
| from torchvision import transforms as TF | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import FluxPipeline | |
| >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) | |
| >>> pipe.to("cuda") | |
| >>> prompt = "A cat holding a sign that says hello world" | |
| >>> # Depending on the variant being used, the pipeline call will slightly vary. | |
| >>> # Refer to the pipeline documentation for more details. | |
| >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0] | |
| >>> image.save("flux.png") | |
| ``` | |
| """ | |
| import sys | |
| sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))) | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.16, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin): | |
| r""" | |
| The Flux pipeline for text-to-image generation. | |
| Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
| Args: | |
| transformer ([`FluxTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
| _optional_components = [] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| text_encoder_2: T5EncoderModel, | |
| tokenizer_2: T5TokenizerFast, | |
| transformer: FluxTransformer2DModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 | |
| ) | |
| self.default_sample_size = 64 | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because `max_sequence_length` is set to " | |
| f" {max_sequence_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] | |
| dtype = self.text_encoder_2.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| return prompt_embeds | |
| def _get_clip_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| ): | |
| device = device or self._execution_device | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer_max_length, | |
| truncation=True, | |
| return_overflowing_tokens=False, | |
| return_length=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) | |
| # Use pooled output of CLIPTextModel | |
| prompt_embeds = prompt_embeds.pooler_output | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
| return prompt_embeds | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in all text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # We only use the pooled prompt output from the CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompt, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompt_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| # text_ids = text_ids.repeat(num_images_per_prompt, 1, 1) | |
| return prompt_embeds, pooled_prompt_embeds, text_ids | |
| def encode_prompt_edit( | |
| self, | |
| prompt: Union[str, List[str]], | |
| prompt_2: Union[str, List[str]], | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Union[str, List[str]] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| do_true_cfg: bool = False, | |
| ): | |
| device = device or self._execution_device | |
| # Set LoRA scale if applicable | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if do_true_cfg and negative_prompt is not None: | |
| negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| negative_batch_size = len(negative_prompt) | |
| if negative_batch_size != batch_size: | |
| raise ValueError( | |
| f"Negative prompt batch size ({negative_batch_size}) does not match prompt batch size ({batch_size})" | |
| ) | |
| # Concatenate prompts | |
| prompts = prompt + negative_prompt | |
| prompts_2 = ( | |
| prompt_2 + negative_prompt_2 if prompt_2 is not None and negative_prompt_2 is not None else None | |
| ) | |
| else: | |
| prompts = prompt | |
| prompts_2 = prompt_2 | |
| if prompt_embeds is None: | |
| if prompts_2 is None: | |
| prompts_2 = prompts | |
| # Get pooled prompt embeddings from CLIPTextModel | |
| pooled_prompt_embeds = self._get_clip_prompt_embeds( | |
| prompt=prompts, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| prompt_embeds = self._get_t5_prompt_embeds( | |
| prompt=prompts_2, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_true_cfg and negative_prompt is not None: | |
| # Split embeddings back into positive and negative parts | |
| total_batch_size = batch_size * num_images_per_prompt | |
| positive_indices = slice(0, total_batch_size) | |
| negative_indices = slice(total_batch_size, 2 * total_batch_size) | |
| positive_pooled_prompt_embeds = pooled_prompt_embeds[positive_indices] | |
| negative_pooled_prompt_embeds = pooled_prompt_embeds[negative_indices] | |
| positive_prompt_embeds = prompt_embeds[positive_indices] | |
| negative_prompt_embeds = prompt_embeds[negative_indices] | |
| pooled_prompt_embeds = positive_pooled_prompt_embeds | |
| prompt_embeds = positive_prompt_embeds | |
| # Unscale LoRA layers | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| if do_true_cfg and negative_prompt is not None: | |
| return ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) | |
| else: | |
| return prompt_embeds, pooled_prompt_embeds, text_ids, None, None | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| def _prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| # latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| height = height // vae_scale_factor | |
| width = width // vae_scale_factor | |
| latents = latents.view(batch_size, height, width, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) | |
| return latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| if latents is not None: | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
| return latents.to(device=device, dtype=dtype), latent_image_ids | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
| return latents, latent_image_ids | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def prepare_mask_latents( | |
| self, | |
| mask, | |
| masked_image, | |
| batch_size, | |
| num_channels_latents, | |
| num_images_per_prompt, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| ): | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| mask = torch.nn.functional.interpolate(mask, size=(height, width)) | |
| mask = mask.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| masked_image = masked_image.to(device=device, dtype=dtype) | |
| if masked_image.shape[1] == 16: | |
| masked_image_latents = masked_image | |
| else: | |
| masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) | |
| masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method | |
| if mask.shape[0] < batch_size: | |
| if not batch_size % mask.shape[0] == 0: | |
| raise ValueError( | |
| "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" | |
| f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" | |
| " of masks that you pass is divisible by the total requested batch size." | |
| ) | |
| mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) | |
| if masked_image_latents.shape[0] < batch_size: | |
| if not batch_size % masked_image_latents.shape[0] == 0: | |
| raise ValueError( | |
| "The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
| f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." | |
| " Make sure the number of images that you pass is divisible by the total requested batch size." | |
| ) | |
| masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
| masked_image_latents = self._pack_latents( | |
| masked_image_latents, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| ) | |
| mask = self._pack_latents( | |
| mask.repeat(1, num_channels_latents, 1, 1), | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| ) | |
| return mask, masked_image_latents | |
| def inpaint( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| optimization_steps: int = 3, | |
| learning_rate: float = 0.8, | |
| max_steps: int = 5, | |
| input_image = None, | |
| save_masked_image = False, | |
| output_path="", | |
| mask_image = None, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| random_latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = random_latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # 4. Preprocess image | |
| # Preprocess mask image | |
| mask_image = mask_image.convert("L") | |
| mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) | |
| mask = TF.Resize(input_image.size, interpolation=TF.InterpolationMode.NEAREST)(mask) | |
| mask = (mask > 0.5) | |
| mask = ~mask | |
| # # Convert input image to tensor and apply mask | |
| # input_image = TF.ToTensor()(input_image).to(device=device, dtype=self.transformer.dtype) | |
| # input_image = input_image * mask.float().expand_as(input_image) | |
| # input_image = TF.ToPILImage()(input_image.cpu()) | |
| image = self.image_processor.preprocess(input_image) | |
| image = image.to(device=device, dtype=self.transformer.dtype) | |
| latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor | |
| h, w = latents.shape[2], latents.shape[3] | |
| mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) | |
| mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask) | |
| # Slightly dilate the mask to increase coverage | |
| kernel_size = 1 # Decreased from 3 to 2 | |
| kernel = torch.ones((1, 1, kernel_size, kernel_size), device=device) | |
| mask = torch.nn.functional.conv2d( | |
| mask.unsqueeze(0), | |
| kernel, | |
| padding=0 | |
| ).squeeze(0) | |
| mask = torch.clamp(mask, 0, 1) | |
| mask = (mask > 0.1).float() | |
| # Remove extra channel dimension if present | |
| if len(mask.shape) == 3 and mask.shape[0] == 1: | |
| mask = mask.squeeze(0) | |
| bool_mask = mask.bool().unsqueeze(0).unsqueeze(0).expand_as(latents) | |
| mask=~bool_mask | |
| print(mask.shape, latents.shape) | |
| masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents | |
| masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| # Decode and save the masked image | |
| if save_masked_image: | |
| with torch.no_grad(): | |
| save_masked_latents = self._unpack_latents(masked_latents, 1024, 1024, self.vae_scale_factor) | |
| save_masked_latents = (save_masked_latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| mask_image = self.vae.decode(save_masked_latents, return_dict=False)[0] | |
| mask_image = self.image_processor.postprocess(mask_image, output_type="pil") | |
| mask_image_path = output_path.replace(".png", "_masked.png") | |
| mask_image[0].save(mask_image_path) | |
| # initialize the random noise for denoising | |
| latents = random_latents.clone().detach() | |
| self.vae = self.vae.to(torch.float32) | |
| # 9. Denoising loop | |
| self.transformer.eval() | |
| self.vae.eval() | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.tensor([guidance_scale], device=device) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| # perform CG | |
| if i < max_steps: | |
| opt_latents = latents.detach().clone() | |
| with torch.enable_grad(): | |
| opt_latents = opt_latents.detach().requires_grad_() | |
| opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True) | |
| # optimizer = torch.optim.Adam([opt_latents], lr=learning_rate) | |
| for _ in range(optimization_steps): | |
| latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0] | |
| loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean() | |
| grad = torch.autograd.grad(loss, opt_latents)[0] | |
| # grad = torch.clamp(grad, -0.5, 0.5) | |
| opt_latents = opt_latents - learning_rate * grad | |
| latents = opt_latents.detach().clone() | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| def get_diff_image(self, latents): | |
| latents = self._unpack_latents(latents, 1024, 1024, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type="pt") | |
| return image | |
| def load_and_preprocess_image(self, image_path, custom_image_processor, device): | |
| from diffusers.utils import load_image | |
| img = load_image(image_path) | |
| img = img.resize((512, 512)) | |
| return custom_image_processor(img).unsqueeze(0).to(device) | |
| def edit( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, # | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg: float = 1.0, # | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| optimization_steps: int = 3, | |
| learning_rate: float = 0.8, | |
| max_steps: int = 5, | |
| input_image = None, | |
| save_masked_image = False, | |
| output_path="", | |
| mask_image=None, | |
| source_steps=1, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| # negative_prompt=negative_prompt, | |
| # negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| # negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| do_true_cfg = true_cfg > 1 and negative_prompt is not None | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt_edit( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| do_true_cfg=do_true_cfg, | |
| ) | |
| # text_ids = text_ids.repeat(batch_size, 1, 1) | |
| if do_true_cfg: | |
| # Concatenate embeddings | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| random_latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = random_latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # 4. Preprocess image | |
| image = self.image_processor.preprocess(input_image) | |
| image = image.to(device=device, dtype=self.transformer.dtype) | |
| latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor | |
| # Convert PIL image to tensor | |
| if mask_image: | |
| from torchvision import transforms as TF | |
| h, w = latents.shape[2], latents.shape[3] | |
| mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) | |
| mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask) | |
| mask = (mask > 0.5).float() | |
| mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions | |
| else: | |
| mask = torch.ones_like(latents).to(device=device) | |
| print(mask.shape, latents.shape) | |
| bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents) | |
| mask=(1-bool_mask*1.0).to(latents.dtype) | |
| masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents | |
| masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| source_latents = (latents).clone().detach() # apply the mask and get gt_latents | |
| source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| # initialize the random noise for denoising | |
| latents = random_latents.clone().detach() | |
| self.vae = self.vae.to(torch.float32) | |
| # 9. Denoising loop | |
| self.transformer.eval() | |
| self.vae.eval() | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latent_model_input.shape[0]) | |
| else: | |
| guidance = None | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if do_true_cfg: | |
| neg_noise_pred, noise_pred = noise_pred.chunk(2) | |
| # noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred) | |
| noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg | |
| # else: | |
| # neg_noise_pred, noise_pred = noise_pred.chunk(2) | |
| # perform CG | |
| if i < max_steps: | |
| opt_latents = latents.detach().clone() | |
| with torch.enable_grad(): | |
| opt_latents = opt_latents.detach().requires_grad_() | |
| opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True) | |
| # optimizer = torch.optim.Adam([opt_latents], lr=learning_rate) | |
| for _ in range(optimization_steps): | |
| latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0] | |
| if i < source_steps: | |
| loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean() | |
| else: | |
| loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean() | |
| grad = torch.autograd.grad(loss, opt_latents)[0] | |
| # grad = torch.clamp(grad, -0.5, 0.5) | |
| opt_latents = opt_latents - learning_rate * grad | |
| latents = opt_latents.detach().clone() | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| def edit2( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, # | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg: float = 1.0, # | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| optimization_steps: int = 3, | |
| learning_rate: float = 0.8, | |
| max_steps: int = 5, | |
| input_image = None, | |
| save_masked_image = False, | |
| output_path="", | |
| mask_image=None, | |
| source_steps=1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| # negative_prompt=negative_prompt, | |
| # negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| # negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| do_true_cfg = true_cfg > 1 and negative_prompt is not None | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt_edit( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| do_true_cfg=do_true_cfg, | |
| ) | |
| # text_ids = text_ids.repeat(batch_size, 1, 1) | |
| if do_true_cfg: | |
| # Concatenate embeddings | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| random_latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = random_latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # 4. Preprocess image | |
| image = self.image_processor.preprocess(input_image) | |
| image = image.to(device=device, dtype=self.transformer.dtype) | |
| latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor | |
| # Convert PIL image to tensor | |
| if mask_image: | |
| from torchvision import transforms as TF | |
| h, w = latents.shape[2], latents.shape[3] | |
| mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype) | |
| mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask) | |
| mask = (mask > 0.1).float() | |
| mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions | |
| else: | |
| mask = torch.ones_like(latents).to(device=device) | |
| bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents) | |
| mask=(1-bool_mask*1.0).to(latents.dtype) | |
| masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents | |
| masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| source_latents = (latents).clone().detach() # apply the mask and get gt_latents | |
| source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor)) | |
| # initialize the random noise for denoising | |
| latents = random_latents.clone().detach() | |
| self.vae = self.vae.to(torch.float32) | |
| # 9. Denoising loop | |
| self.transformer.eval() | |
| self.vae.eval() | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latent_model_input.shape[0]) | |
| else: | |
| guidance = None | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if do_true_cfg and i < max_steps: | |
| neg_noise_pred, noise_pred = noise_pred.chunk(2) | |
| # noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred) | |
| noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg | |
| else: | |
| neg_noise_pred, noise_pred = noise_pred.chunk(2) | |
| # perform CG | |
| if i < max_steps: | |
| opt_latents = latents.detach().clone() | |
| with torch.enable_grad(): | |
| opt_latents = opt_latents.detach().requires_grad_() | |
| opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True) | |
| # optimizer = torch.optim.Adam([opt_latents], lr=learning_rate) | |
| for _ in range(optimization_steps): | |
| latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0] | |
| if i < source_steps: | |
| loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean() | |
| else: | |
| loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean() | |
| grad = torch.autograd.grad(loss, opt_latents)[0] | |
| # grad = torch.clamp(grad, -0.5, 0.5) | |
| opt_latents = opt_latents - learning_rate * grad | |
| latents = opt_latents.detach().clone() | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |