import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass from huggingface_hub import PyTorchModelHubMixin from fireredtts2.llm.modules import FLAVORS def _prepare_transformer(model): embed_dim = model.tok_embeddings.embedding_dim model.tok_embeddings = nn.Identity() model.output = nn.Identity() return model, embed_dim def _create_causal_mask(seq_len: int, device: torch.device): return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor): """ Args: mask: (max_seq_len, max_seq_len) input_pos: (batch_size, seq_len) Returns: (batch_size, seq_len, max_seq_len) """ r = mask[input_pos, :] return r # Does multinomial sampling without a cuda synchronization def _multinomial_sample_one_no_sync(probs): q = torch.empty_like(probs).exponential_(1) return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int) def sample_topk(logits: torch.Tensor, topk: int, temperature: float): logits = logits / temperature filter_value: float = -float("Inf") indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None] scores_processed = logits.masked_fill(indices_to_remove, filter_value) scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1) probs = torch.nn.functional.softmax(scores_processed, dim=-1) sample_token = _multinomial_sample_one_no_sync(probs) return sample_token def sample_top_nsigma(logits: torch.Tensor, n: float, temperature: float): """_summary_ Args: logits (torch.Tensor): _description_ n (float): _description_ temperature (float): _description_ Returns: _type_: _description_ """ logits = logits / temperature threshold = logits.max(dim=-1, keepdim=True).values - n * logits.std( dim=-1, keepdim=True ) logits[logits < threshold] = float("-inf") # scores_processed = torch.nn.functional.log_softmax(logits, dim=-1) probs = torch.nn.functional.softmax(logits, dim=-1) sample_token = _multinomial_sample_one_no_sync(probs) return sample_token @dataclass class ModelArgs: backbone_flavor: str decoder_flavor: str text_vocab_size: int audio_vocab_size: int audio_num_codebooks: int decoder_loss_weight: float use_text_loss: bool class Model(nn.Module, PyTorchModelHubMixin): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.backbone, backbone_dim = _prepare_transformer( FLAVORS[config.backbone_flavor]() ) self.decoder, decoder_dim = _prepare_transformer( FLAVORS[config.decoder_flavor]() ) self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim) self.audio_embeddings = nn.Embedding( config.audio_vocab_size * config.audio_num_codebooks, backbone_dim ) self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False) self.text_head = nn.Linear(backbone_dim, config.text_vocab_size, bias=False) self.codebook0_head = nn.Linear( backbone_dim, config.audio_vocab_size, bias=False ) self.audio_head = nn.Parameter( torch.empty( config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size ) ) self.decoder_loss_weight = config.decoder_loss_weight self.use_text_loss = config.use_text_loss # debug # print("---backbone_dim:", backbone_dim) # print("---decoder_dim:", decoder_dim) # print("---self.decoder_loss_weight:", self.decoder_loss_weight) # print("---self.use_text_loss:", self.use_text_loss) def setup_caches(self, max_batch_size: int) -> torch.Tensor: """Setup KV caches and return a causal mask.""" dtype = next(self.parameters()).dtype device = next(self.parameters()).device with device: self.backbone.setup_caches(max_batch_size, dtype) self.decoder.setup_caches( max_batch_size, dtype, decoder_max_seq_len=self.config.audio_num_codebooks, ) self.register_buffer( "backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device), ) self.register_buffer( "decoder_causal_mask", _create_causal_mask(self.config.audio_num_codebooks, device), ) def forward(self, tokens: torch.Tensor, tokens_mask: torch.Tensor): """ Forward pass for Sesame's CSM model. This will be added to the model with `model.forward = types.MethodType(forward, model)` Args: tokens: (batch_size, seq_len, n_codebooks+1) tokens_mask: (batch_size, seq_len, n_codebooks+1) """ dtype = next(self.parameters()).dtype bsz, seq_len, _ = tokens.size() device = tokens.device # print("---tokens:\n", tokens, tokens.shape) # print("---tokens_mask:\n", tokens_mask, tokens_mask.shape) # print("---bsz:", bsz) # print("---seq_len:", seq_len) # embed tokens embeds = self._embed_tokens(tokens) # (bsz,seq_len,33,2048) # print("---embeds:\n", embeds, embeds.shape) # get targets and codebook embeddings corresponding to audio tokens audio_mask = tokens_mask[:, :, 0] # [bsz, seq_len] target_tokens = tokens[audio_mask][:, :-1] # [audio_len, n_codebooks] # [audio_len, n_codebooks, embed_dim] c_embeds = embeds[:, :, :-1, :][audio_mask] # print("---audio_mask:\n", audio_mask, audio_mask.shape) # print("---target_tokens:\n", target_tokens, target_tokens.shape) # get targets corresponding to text tokens text_mask = tokens_mask[:, :, -1] text_target_mask = torch.roll(input=text_mask, shifts=1, dims=1) text_target_tokens = tokens[text_target_mask][:, -1] # print("---text_target_mask:\n", text_target_mask, text_target_mask.shape) # print("---target_text_tokens:\n", text_target_tokens, text_target_tokens.shape) # print("\n\n") # retain just non-padding embeddings masked_embeds = embeds * tokens_mask.unsqueeze(-1) h = masked_embeds.sum(dim=2) # backbone forward pass # [bsz, seq_len] padding_mask = tokens_mask[:, :, 0] | tokens_mask[:, :, -1] # [seq_len, seq_len] backbone_attn_mask = _create_causal_mask(seq_len, device) # [bsz, seq_len, seq_len] padding_3d = padding_mask.unsqueeze(-1) * padding_mask.unsqueeze(1) backbone_attn_mask = backbone_attn_mask.unsqueeze(0) * padding_3d backbone_attn_mask = backbone_attn_mask | torch.eye( seq_len, device=device ).bool().unsqueeze(0).expand(bsz, -1, -1) input_pos = ( torch.arange(0, seq_len).unsqueeze(0).expand(bsz, seq_len).long().to(device) ) h = self.backbone(h, input_pos=input_pos, mask=backbone_attn_mask).to( dtype=dtype ) # print("---h:\n", h, h.shape) # get backbone embeddings used for audio codebook prediction predict first codebook and compute loss audio_mask = torch.roll(audio_mask, -1, 1) # shift audio mask to the right by 1 audio_h = h[audio_mask] # [audio_len, embed_dim] # print("---audio_mask after shift:\n", audio_mask, audio_mask.shape) c0_logits = self.codebook0_head(audio_h) # [audio_len, audio_vocab_size] c0_target = target_tokens[:, 0] # [audio_len] c0_loss = F.cross_entropy(c0_logits, c0_target) # predict text loss text_h = h[text_mask] text_logits = self.text_head(text_h) text_loss = F.cross_entropy(text_logits, text_target_tokens, ignore_index=0) # print("---text_h:\n", text_h, text_h.shape) # print("---text_logits:\n", text_logits) # print("---text_loss:", text_loss) # "compute amortization" (train decoder on random 1/16 subset of audio tokens) # important change to 1/8 # indices = torch.randperm(c_embeds.size(0))[: c_embeds.size(0) // 16] indices = torch.randperm(c_embeds.size(0))[: c_embeds.size(0) // 8] # [audio_len//16, n_codebooks-1, embed_dim] c_embeds = c_embeds[indices][:, :-1, :] audio_h = audio_h[indices] # [audio_len//16, embed_dim] target_tokens = target_tokens[indices][:, 1:] # [audio_len//16, n_codebooks-1] # concatenate backbone embeddings and codebook embeddings for decoder input # [audio_len//16, n_codebooks, embed_dim] decoder_embeds = torch.cat([audio_h.unsqueeze(1), c_embeds], dim=1) N, n_codebooks, _ = decoder_embeds.size() c_pos = ( torch.arange(0, n_codebooks) .unsqueeze(0) .expand(N, n_codebooks) .long() .to(device) ) decoder_causal_mask = _create_causal_mask( decoder_embeds.size(1), device ).expand(N, -1, -1) decoder_h = self.decoder( self.projection(decoder_embeds), input_pos=c_pos, mask=decoder_causal_mask ).to(dtype=dtype) c_logits = torch.einsum("bsd,sdv->bsv", decoder_h[:, 1:, :], self.audio_head) c_loss = F.cross_entropy( c_logits.reshape(-1, c_logits.size(-1)), target_tokens.reshape(-1) ) if self.use_text_loss: loss = ( 2 * ( (1 - self.decoder_loss_weight) * c0_loss + self.decoder_loss_weight * c_loss ) + 0.01 * text_loss ) else: loss = 2 * ( (1 - self.decoder_loss_weight) * c0_loss + self.decoder_loss_weight * c_loss ) return loss, text_loss, c0_loss, c_loss def generate_frame( self, tokens: torch.Tensor, tokens_mask: torch.Tensor, input_pos: torch.Tensor, temperature: float, topk: int, ) -> torch.Tensor: """ Args: tokens: (batch_size, seq_len, audio_num_codebooks+1) tokens_mask: (batch_size, seq_len, audio_num_codebooks+1) input_pos: (batch_size, seq_len) positions for each token mask: (batch_size, seq_len, max_seq_len Returns: (batch_size, audio_num_codebooks) sampled tokens """ dtype = next(self.parameters()).dtype b, s, _ = tokens.size() assert self.backbone.caches_are_enabled(), "backbone caches are not enabled" curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos) embeds = self._embed_tokens(tokens) masked_embeds = embeds * tokens_mask.unsqueeze(-1) h = masked_embeds.sum(dim=2) h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to( dtype=dtype ) last_h = h[:, -1, :] c0_logits = self.codebook0_head(last_h) c0_sample = sample_topk(c0_logits, topk, temperature) c0_embed = self._embed_audio(0, c0_sample) curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1) curr_sample = c0_sample.clone() curr_pos = ( torch.arange(0, curr_h.size(1), device=curr_h.device) .unsqueeze(0) .repeat(curr_h.size(0), 1) ) # Decoder caches must be reset every frame. self.decoder.reset_caches() for i in range(1, self.config.audio_num_codebooks): curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos) decoder_h = self.decoder( self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask ).to(dtype=dtype) ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1]) ci_sample = sample_topk(ci_logits, 10, 0.75) # fix to 10 and 0.75 ci_embed = self._embed_audio(i, ci_sample) curr_h = ci_embed curr_sample = torch.cat([curr_sample, ci_sample], dim=1) curr_pos = curr_pos[:, -1:] + 1 return curr_sample def reset_caches(self): self.backbone.reset_caches() self.decoder.reset_caches() def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor: return self.audio_embeddings(tokens + codebook * self.config.audio_vocab_size) def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor: text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2) audio_tokens = tokens[:, :, :-1] + ( self.config.audio_vocab_size * torch.arange(self.config.audio_num_codebooks, device=tokens.device) ) audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape( tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1 ) return torch.cat([audio_embeds, text_embeds], dim=-2) if __name__ == "__main__": MIMI_SAMPLE_RATE = 24000 BACKBONE_FLAVOR = "qwen-3b" DECODER_FLAVOR = "qwen-500m" TEXT_VOCAB_SIZE = 128256 AUDIO_VOCAB_SIZE = 2051 AUDIO_NUM_CODEBOOKS = 32 config = ModelArgs( backbone_flavor=BACKBONE_FLAVOR, decoder_flavor=DECODER_FLAVOR, text_vocab_size=TEXT_VOCAB_SIZE, audio_vocab_size=AUDIO_VOCAB_SIZE, audio_num_codebooks=AUDIO_NUM_CODEBOOKS, decoder_loss_weight=0.5, use_text_loss=True, ) model = Model(config)