File size: 1,992 Bytes
71cd91e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from torchtune.models.qwen2 import qwen2
from torchtune.modules.transformer import TransformerDecoder


def qwen2_200M() -> TransformerDecoder:
    return qwen2(
        vocab_size=151936,
        num_layers=4,
        num_heads=12,
        num_kv_heads=2,
        embed_dim=1536,
        intermediate_dim=8960,
        max_seq_len=4096,
        attn_dropout=0.0,
        norm_eps=1e-6,
        rope_base=1000000.0,
        tie_word_embeddings=True,
    )


def qwen2_500M() -> TransformerDecoder:
    return qwen2(
        vocab_size=151936,
        num_layers=24,
        num_heads=14,
        num_kv_heads=2,
        embed_dim=896,
        intermediate_dim=4864,
        max_seq_len=4096,
        attn_dropout=0.0,
        norm_eps=1e-6,
        rope_base=1000000.0,
        tie_word_embeddings=True,
    )


def qwen2_1_5B() -> TransformerDecoder:
    return qwen2(
        vocab_size=151936,
        num_layers=28,
        num_heads=12,
        num_kv_heads=2,
        embed_dim=1536,
        intermediate_dim=8960,
        max_seq_len=4096,
        attn_dropout=0.0,
        norm_eps=1e-6,
        rope_base=1000000.0,
        tie_word_embeddings=True,
    )


def qwen2_3B() -> TransformerDecoder:
    return qwen2(
        vocab_size=151936,
        num_layers=36,
        num_heads=16,
        num_kv_heads=2,
        embed_dim=2048,
        intermediate_dim=11008,
        max_seq_len=4096,
        attn_dropout=0.0,
        norm_eps=1e-6,
        rope_base=1000000.0,
        tie_word_embeddings=True,
    )


def qwen2_7B() -> TransformerDecoder:
    return qwen2(
        vocab_size=152064,
        num_layers=28,
        num_heads=28,
        num_kv_heads=4,
        embed_dim=3584,
        intermediate_dim=18944,
        max_seq_len=4096,
        attn_dropout=0.0,
        norm_eps=1e-6,
        rope_base=1000000.0,
    )


FLAVORS = {
    "qwen-200m": qwen2_200M,
    "qwen-500m": qwen2_500M,
    "qwen-1.5b": qwen2_1_5B,
    "qwen-3b": qwen2_3B,
    "qwen-7b": qwen2_7B,
}