File size: 13,793 Bytes
71cd91e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from huggingface_hub import PyTorchModelHubMixin
from fireredtts2.llm.modules import FLAVORS


def _prepare_transformer(model):
    embed_dim = model.tok_embeddings.embedding_dim
    model.tok_embeddings = nn.Identity()
    model.output = nn.Identity()
    return model, embed_dim


def _create_causal_mask(seq_len: int, device: torch.device):
    return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))


def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
    """
    Args:
        mask: (max_seq_len, max_seq_len)
        input_pos: (batch_size, seq_len)

    Returns:
        (batch_size, seq_len, max_seq_len)
    """
    r = mask[input_pos, :]
    return r


# Does multinomial sampling without a cuda synchronization
def _multinomial_sample_one_no_sync(probs):
    q = torch.empty_like(probs).exponential_(1)
    return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int)


def sample_topk(logits: torch.Tensor, topk: int, temperature: float):
    logits = logits / temperature

    filter_value: float = -float("Inf")
    indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
    scores_processed = logits.masked_fill(indices_to_remove, filter_value)
    scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1)
    probs = torch.nn.functional.softmax(scores_processed, dim=-1)

    sample_token = _multinomial_sample_one_no_sync(probs)
    return sample_token


def sample_top_nsigma(logits: torch.Tensor, n: float, temperature: float):
    """_summary_

    Args:
        logits (torch.Tensor): _description_
        n (float): _description_
        temperature (float): _description_

    Returns:
        _type_: _description_
    """
    logits = logits / temperature
    threshold = logits.max(dim=-1, keepdim=True).values - n * logits.std(
        dim=-1, keepdim=True
    )
    logits[logits < threshold] = float("-inf")
    # scores_processed = torch.nn.functional.log_softmax(logits, dim=-1)
    probs = torch.nn.functional.softmax(logits, dim=-1)

    sample_token = _multinomial_sample_one_no_sync(probs)
    return sample_token


@dataclass
class ModelArgs:
    backbone_flavor: str
    decoder_flavor: str
    text_vocab_size: int
    audio_vocab_size: int
    audio_num_codebooks: int
    decoder_loss_weight: float
    use_text_loss: bool


class Model(nn.Module, PyTorchModelHubMixin):
    def __init__(self, config: ModelArgs):
        super().__init__()
        self.config = config

        self.backbone, backbone_dim = _prepare_transformer(
            FLAVORS[config.backbone_flavor]()
        )
        self.decoder, decoder_dim = _prepare_transformer(
            FLAVORS[config.decoder_flavor]()
        )

        self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
        self.audio_embeddings = nn.Embedding(
            config.audio_vocab_size * config.audio_num_codebooks, backbone_dim
        )

        self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
        self.text_head = nn.Linear(backbone_dim, config.text_vocab_size, bias=False)
        self.codebook0_head = nn.Linear(
            backbone_dim, config.audio_vocab_size, bias=False
        )
        self.audio_head = nn.Parameter(
            torch.empty(
                config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size
            )
        )

        self.decoder_loss_weight = config.decoder_loss_weight
        self.use_text_loss = config.use_text_loss

        # debug
        # print("---backbone_dim:", backbone_dim)
        # print("---decoder_dim:", decoder_dim)
        # print("---self.decoder_loss_weight:", self.decoder_loss_weight)
        # print("---self.use_text_loss:", self.use_text_loss)

    def setup_caches(self, max_batch_size: int) -> torch.Tensor:
        """Setup KV caches and return a causal mask."""
        dtype = next(self.parameters()).dtype
        device = next(self.parameters()).device

        with device:
            self.backbone.setup_caches(max_batch_size, dtype)
            self.decoder.setup_caches(
                max_batch_size,
                dtype,
                decoder_max_seq_len=self.config.audio_num_codebooks,
            )

        self.register_buffer(
            "backbone_causal_mask",
            _create_causal_mask(self.backbone.max_seq_len, device),
        )
        self.register_buffer(
            "decoder_causal_mask",
            _create_causal_mask(self.config.audio_num_codebooks, device),
        )

    def forward(self, tokens: torch.Tensor, tokens_mask: torch.Tensor):
        """
        Forward pass for Sesame's CSM model.
        This will be added to the model with `model.forward = types.MethodType(forward, model)`

        Args:
            tokens: (batch_size, seq_len, n_codebooks+1)
            tokens_mask: (batch_size, seq_len, n_codebooks+1)
        """

        dtype = next(self.parameters()).dtype
        bsz, seq_len, _ = tokens.size()
        device = tokens.device

        # print("---tokens:\n", tokens, tokens.shape)
        # print("---tokens_mask:\n", tokens_mask, tokens_mask.shape)
        # print("---bsz:", bsz)
        # print("---seq_len:", seq_len)

        # embed tokens
        embeds = self._embed_tokens(tokens)  # (bsz,seq_len,33,2048)
        # print("---embeds:\n", embeds, embeds.shape)

        # get targets and codebook embeddings corresponding to audio tokens
        audio_mask = tokens_mask[:, :, 0]  # [bsz, seq_len]
        target_tokens = tokens[audio_mask][:, :-1]  # [audio_len, n_codebooks]
        # [audio_len, n_codebooks, embed_dim]
        c_embeds = embeds[:, :, :-1, :][audio_mask]
        # print("---audio_mask:\n", audio_mask, audio_mask.shape)
        # print("---target_tokens:\n", target_tokens, target_tokens.shape)

        # get targets corresponding to text tokens
        text_mask = tokens_mask[:, :, -1]
        text_target_mask = torch.roll(input=text_mask, shifts=1, dims=1)
        text_target_tokens = tokens[text_target_mask][:, -1]

        # print("---text_target_mask:\n", text_target_mask, text_target_mask.shape)
        # print("---target_text_tokens:\n", text_target_tokens, text_target_tokens.shape)

        # print("\n\n")

        # retain just non-padding embeddings
        masked_embeds = embeds * tokens_mask.unsqueeze(-1)
        h = masked_embeds.sum(dim=2)

        # backbone forward pass
        # [bsz, seq_len]
        padding_mask = tokens_mask[:, :, 0] | tokens_mask[:, :, -1]
        # [seq_len, seq_len]
        backbone_attn_mask = _create_causal_mask(seq_len, device)
        # [bsz, seq_len, seq_len]
        padding_3d = padding_mask.unsqueeze(-1) * padding_mask.unsqueeze(1)
        backbone_attn_mask = backbone_attn_mask.unsqueeze(0) * padding_3d
        backbone_attn_mask = backbone_attn_mask | torch.eye(
            seq_len, device=device
        ).bool().unsqueeze(0).expand(bsz, -1, -1)
        input_pos = (
            torch.arange(0, seq_len).unsqueeze(0).expand(bsz, seq_len).long().to(device)
        )
        h = self.backbone(h, input_pos=input_pos, mask=backbone_attn_mask).to(
            dtype=dtype
        )
        # print("---h:\n", h, h.shape)

        # get backbone embeddings used for audio codebook prediction predict first codebook and compute loss
        audio_mask = torch.roll(audio_mask, -1, 1)  # shift audio mask to the right by 1
        audio_h = h[audio_mask]  # [audio_len, embed_dim]
        # print("---audio_mask after shift:\n", audio_mask, audio_mask.shape)
        c0_logits = self.codebook0_head(audio_h)  # [audio_len, audio_vocab_size]
        c0_target = target_tokens[:, 0]  # [audio_len]
        c0_loss = F.cross_entropy(c0_logits, c0_target)

        # predict text loss
        text_h = h[text_mask]
        text_logits = self.text_head(text_h)
        text_loss = F.cross_entropy(text_logits, text_target_tokens, ignore_index=0)
        # print("---text_h:\n", text_h, text_h.shape)
        # print("---text_logits:\n", text_logits)
        # print("---text_loss:", text_loss)

        # "compute amortization" (train decoder on random 1/16 subset of audio tokens)
        # important change to 1/8
        # indices = torch.randperm(c_embeds.size(0))[: c_embeds.size(0) // 16]
        indices = torch.randperm(c_embeds.size(0))[: c_embeds.size(0) // 8]
        # [audio_len//16, n_codebooks-1, embed_dim]
        c_embeds = c_embeds[indices][:, :-1, :]
        audio_h = audio_h[indices]  # [audio_len//16, embed_dim]
        target_tokens = target_tokens[indices][:, 1:]  # [audio_len//16, n_codebooks-1]

        # concatenate backbone embeddings and codebook embeddings for decoder input
        # [audio_len//16, n_codebooks, embed_dim]
        decoder_embeds = torch.cat([audio_h.unsqueeze(1), c_embeds], dim=1)
        N, n_codebooks, _ = decoder_embeds.size()
        c_pos = (
            torch.arange(0, n_codebooks)
            .unsqueeze(0)
            .expand(N, n_codebooks)
            .long()
            .to(device)
        )

        decoder_causal_mask = _create_causal_mask(
            decoder_embeds.size(1), device
        ).expand(N, -1, -1)
        decoder_h = self.decoder(
            self.projection(decoder_embeds), input_pos=c_pos, mask=decoder_causal_mask
        ).to(dtype=dtype)
        c_logits = torch.einsum("bsd,sdv->bsv", decoder_h[:, 1:, :], self.audio_head)

        c_loss = F.cross_entropy(
            c_logits.reshape(-1, c_logits.size(-1)), target_tokens.reshape(-1)
        )

        if self.use_text_loss:
            loss = (
                2
                * (
                    (1 - self.decoder_loss_weight) * c0_loss
                    + self.decoder_loss_weight * c_loss
                )
                + 0.01 * text_loss
            )
        else:
            loss = 2 * (
                (1 - self.decoder_loss_weight) * c0_loss
                + self.decoder_loss_weight * c_loss
            )
        return loss, text_loss, c0_loss, c_loss

    def generate_frame(
        self,
        tokens: torch.Tensor,
        tokens_mask: torch.Tensor,
        input_pos: torch.Tensor,
        temperature: float,
        topk: int,
    ) -> torch.Tensor:
        """
        Args:
            tokens: (batch_size, seq_len, audio_num_codebooks+1)
            tokens_mask: (batch_size, seq_len, audio_num_codebooks+1)
            input_pos: (batch_size, seq_len) positions for each token
            mask: (batch_size, seq_len, max_seq_len

        Returns:
            (batch_size, audio_num_codebooks) sampled tokens
        """
        dtype = next(self.parameters()).dtype
        b, s, _ = tokens.size()

        assert self.backbone.caches_are_enabled(), "backbone caches are not enabled"
        curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
        embeds = self._embed_tokens(tokens)
        masked_embeds = embeds * tokens_mask.unsqueeze(-1)
        h = masked_embeds.sum(dim=2)
        h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(
            dtype=dtype
        )

        last_h = h[:, -1, :]
        c0_logits = self.codebook0_head(last_h)
        c0_sample = sample_topk(c0_logits, topk, temperature)
        c0_embed = self._embed_audio(0, c0_sample)
        curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1)
        curr_sample = c0_sample.clone()
        curr_pos = (
            torch.arange(0, curr_h.size(1), device=curr_h.device)
            .unsqueeze(0)
            .repeat(curr_h.size(0), 1)
        )

        # Decoder caches must be reset every frame.
        self.decoder.reset_caches()
        for i in range(1, self.config.audio_num_codebooks):
            curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
            decoder_h = self.decoder(
                self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask
            ).to(dtype=dtype)
            ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1])
            ci_sample = sample_topk(ci_logits, 10, 0.75)  # fix to 10 and 0.75
            ci_embed = self._embed_audio(i, ci_sample)
            curr_h = ci_embed
            curr_sample = torch.cat([curr_sample, ci_sample], dim=1)
            curr_pos = curr_pos[:, -1:] + 1

        return curr_sample

    def reset_caches(self):
        self.backbone.reset_caches()
        self.decoder.reset_caches()

    def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
        return self.audio_embeddings(tokens + codebook * self.config.audio_vocab_size)

    def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
        text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2)

        audio_tokens = tokens[:, :, :-1] + (
            self.config.audio_vocab_size
            * torch.arange(self.config.audio_num_codebooks, device=tokens.device)
        )
        audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape(
            tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1
        )

        return torch.cat([audio_embeds, text_embeds], dim=-2)


if __name__ == "__main__":

    MIMI_SAMPLE_RATE = 24000
    BACKBONE_FLAVOR = "qwen-3b"
    DECODER_FLAVOR = "qwen-500m"
    TEXT_VOCAB_SIZE = 128256
    AUDIO_VOCAB_SIZE = 2051
    AUDIO_NUM_CODEBOOKS = 32

    config = ModelArgs(
        backbone_flavor=BACKBONE_FLAVOR,
        decoder_flavor=DECODER_FLAVOR,
        text_vocab_size=TEXT_VOCAB_SIZE,
        audio_vocab_size=AUDIO_VOCAB_SIZE,
        audio_num_codebooks=AUDIO_NUM_CODEBOOKS,
        decoder_loss_weight=0.5,
        use_text_loss=True,
    )
    model = Model(config)