Spaces:
Runtime error
Runtime error
File size: 13,793 Bytes
71cd91e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from huggingface_hub import PyTorchModelHubMixin
from fireredtts2.llm.modules import FLAVORS
def _prepare_transformer(model):
embed_dim = model.tok_embeddings.embedding_dim
model.tok_embeddings = nn.Identity()
model.output = nn.Identity()
return model, embed_dim
def _create_causal_mask(seq_len: int, device: torch.device):
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
"""
Args:
mask: (max_seq_len, max_seq_len)
input_pos: (batch_size, seq_len)
Returns:
(batch_size, seq_len, max_seq_len)
"""
r = mask[input_pos, :]
return r
# Does multinomial sampling without a cuda synchronization
def _multinomial_sample_one_no_sync(probs):
q = torch.empty_like(probs).exponential_(1)
return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample_topk(logits: torch.Tensor, topk: int, temperature: float):
logits = logits / temperature
filter_value: float = -float("Inf")
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
scores_processed = logits.masked_fill(indices_to_remove, filter_value)
scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1)
probs = torch.nn.functional.softmax(scores_processed, dim=-1)
sample_token = _multinomial_sample_one_no_sync(probs)
return sample_token
def sample_top_nsigma(logits: torch.Tensor, n: float, temperature: float):
"""_summary_
Args:
logits (torch.Tensor): _description_
n (float): _description_
temperature (float): _description_
Returns:
_type_: _description_
"""
logits = logits / temperature
threshold = logits.max(dim=-1, keepdim=True).values - n * logits.std(
dim=-1, keepdim=True
)
logits[logits < threshold] = float("-inf")
# scores_processed = torch.nn.functional.log_softmax(logits, dim=-1)
probs = torch.nn.functional.softmax(logits, dim=-1)
sample_token = _multinomial_sample_one_no_sync(probs)
return sample_token
@dataclass
class ModelArgs:
backbone_flavor: str
decoder_flavor: str
text_vocab_size: int
audio_vocab_size: int
audio_num_codebooks: int
decoder_loss_weight: float
use_text_loss: bool
class Model(nn.Module, PyTorchModelHubMixin):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.backbone, backbone_dim = _prepare_transformer(
FLAVORS[config.backbone_flavor]()
)
self.decoder, decoder_dim = _prepare_transformer(
FLAVORS[config.decoder_flavor]()
)
self.text_embeddings = nn.Embedding(config.text_vocab_size, backbone_dim)
self.audio_embeddings = nn.Embedding(
config.audio_vocab_size * config.audio_num_codebooks, backbone_dim
)
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
self.text_head = nn.Linear(backbone_dim, config.text_vocab_size, bias=False)
self.codebook0_head = nn.Linear(
backbone_dim, config.audio_vocab_size, bias=False
)
self.audio_head = nn.Parameter(
torch.empty(
config.audio_num_codebooks - 1, decoder_dim, config.audio_vocab_size
)
)
self.decoder_loss_weight = config.decoder_loss_weight
self.use_text_loss = config.use_text_loss
# debug
# print("---backbone_dim:", backbone_dim)
# print("---decoder_dim:", decoder_dim)
# print("---self.decoder_loss_weight:", self.decoder_loss_weight)
# print("---self.use_text_loss:", self.use_text_loss)
def setup_caches(self, max_batch_size: int) -> torch.Tensor:
"""Setup KV caches and return a causal mask."""
dtype = next(self.parameters()).dtype
device = next(self.parameters()).device
with device:
self.backbone.setup_caches(max_batch_size, dtype)
self.decoder.setup_caches(
max_batch_size,
dtype,
decoder_max_seq_len=self.config.audio_num_codebooks,
)
self.register_buffer(
"backbone_causal_mask",
_create_causal_mask(self.backbone.max_seq_len, device),
)
self.register_buffer(
"decoder_causal_mask",
_create_causal_mask(self.config.audio_num_codebooks, device),
)
def forward(self, tokens: torch.Tensor, tokens_mask: torch.Tensor):
"""
Forward pass for Sesame's CSM model.
This will be added to the model with `model.forward = types.MethodType(forward, model)`
Args:
tokens: (batch_size, seq_len, n_codebooks+1)
tokens_mask: (batch_size, seq_len, n_codebooks+1)
"""
dtype = next(self.parameters()).dtype
bsz, seq_len, _ = tokens.size()
device = tokens.device
# print("---tokens:\n", tokens, tokens.shape)
# print("---tokens_mask:\n", tokens_mask, tokens_mask.shape)
# print("---bsz:", bsz)
# print("---seq_len:", seq_len)
# embed tokens
embeds = self._embed_tokens(tokens) # (bsz,seq_len,33,2048)
# print("---embeds:\n", embeds, embeds.shape)
# get targets and codebook embeddings corresponding to audio tokens
audio_mask = tokens_mask[:, :, 0] # [bsz, seq_len]
target_tokens = tokens[audio_mask][:, :-1] # [audio_len, n_codebooks]
# [audio_len, n_codebooks, embed_dim]
c_embeds = embeds[:, :, :-1, :][audio_mask]
# print("---audio_mask:\n", audio_mask, audio_mask.shape)
# print("---target_tokens:\n", target_tokens, target_tokens.shape)
# get targets corresponding to text tokens
text_mask = tokens_mask[:, :, -1]
text_target_mask = torch.roll(input=text_mask, shifts=1, dims=1)
text_target_tokens = tokens[text_target_mask][:, -1]
# print("---text_target_mask:\n", text_target_mask, text_target_mask.shape)
# print("---target_text_tokens:\n", text_target_tokens, text_target_tokens.shape)
# print("\n\n")
# retain just non-padding embeddings
masked_embeds = embeds * tokens_mask.unsqueeze(-1)
h = masked_embeds.sum(dim=2)
# backbone forward pass
# [bsz, seq_len]
padding_mask = tokens_mask[:, :, 0] | tokens_mask[:, :, -1]
# [seq_len, seq_len]
backbone_attn_mask = _create_causal_mask(seq_len, device)
# [bsz, seq_len, seq_len]
padding_3d = padding_mask.unsqueeze(-1) * padding_mask.unsqueeze(1)
backbone_attn_mask = backbone_attn_mask.unsqueeze(0) * padding_3d
backbone_attn_mask = backbone_attn_mask | torch.eye(
seq_len, device=device
).bool().unsqueeze(0).expand(bsz, -1, -1)
input_pos = (
torch.arange(0, seq_len).unsqueeze(0).expand(bsz, seq_len).long().to(device)
)
h = self.backbone(h, input_pos=input_pos, mask=backbone_attn_mask).to(
dtype=dtype
)
# print("---h:\n", h, h.shape)
# get backbone embeddings used for audio codebook prediction predict first codebook and compute loss
audio_mask = torch.roll(audio_mask, -1, 1) # shift audio mask to the right by 1
audio_h = h[audio_mask] # [audio_len, embed_dim]
# print("---audio_mask after shift:\n", audio_mask, audio_mask.shape)
c0_logits = self.codebook0_head(audio_h) # [audio_len, audio_vocab_size]
c0_target = target_tokens[:, 0] # [audio_len]
c0_loss = F.cross_entropy(c0_logits, c0_target)
# predict text loss
text_h = h[text_mask]
text_logits = self.text_head(text_h)
text_loss = F.cross_entropy(text_logits, text_target_tokens, ignore_index=0)
# print("---text_h:\n", text_h, text_h.shape)
# print("---text_logits:\n", text_logits)
# print("---text_loss:", text_loss)
# "compute amortization" (train decoder on random 1/16 subset of audio tokens)
# important change to 1/8
# indices = torch.randperm(c_embeds.size(0))[: c_embeds.size(0) // 16]
indices = torch.randperm(c_embeds.size(0))[: c_embeds.size(0) // 8]
# [audio_len//16, n_codebooks-1, embed_dim]
c_embeds = c_embeds[indices][:, :-1, :]
audio_h = audio_h[indices] # [audio_len//16, embed_dim]
target_tokens = target_tokens[indices][:, 1:] # [audio_len//16, n_codebooks-1]
# concatenate backbone embeddings and codebook embeddings for decoder input
# [audio_len//16, n_codebooks, embed_dim]
decoder_embeds = torch.cat([audio_h.unsqueeze(1), c_embeds], dim=1)
N, n_codebooks, _ = decoder_embeds.size()
c_pos = (
torch.arange(0, n_codebooks)
.unsqueeze(0)
.expand(N, n_codebooks)
.long()
.to(device)
)
decoder_causal_mask = _create_causal_mask(
decoder_embeds.size(1), device
).expand(N, -1, -1)
decoder_h = self.decoder(
self.projection(decoder_embeds), input_pos=c_pos, mask=decoder_causal_mask
).to(dtype=dtype)
c_logits = torch.einsum("bsd,sdv->bsv", decoder_h[:, 1:, :], self.audio_head)
c_loss = F.cross_entropy(
c_logits.reshape(-1, c_logits.size(-1)), target_tokens.reshape(-1)
)
if self.use_text_loss:
loss = (
2
* (
(1 - self.decoder_loss_weight) * c0_loss
+ self.decoder_loss_weight * c_loss
)
+ 0.01 * text_loss
)
else:
loss = 2 * (
(1 - self.decoder_loss_weight) * c0_loss
+ self.decoder_loss_weight * c_loss
)
return loss, text_loss, c0_loss, c_loss
def generate_frame(
self,
tokens: torch.Tensor,
tokens_mask: torch.Tensor,
input_pos: torch.Tensor,
temperature: float,
topk: int,
) -> torch.Tensor:
"""
Args:
tokens: (batch_size, seq_len, audio_num_codebooks+1)
tokens_mask: (batch_size, seq_len, audio_num_codebooks+1)
input_pos: (batch_size, seq_len) positions for each token
mask: (batch_size, seq_len, max_seq_len
Returns:
(batch_size, audio_num_codebooks) sampled tokens
"""
dtype = next(self.parameters()).dtype
b, s, _ = tokens.size()
assert self.backbone.caches_are_enabled(), "backbone caches are not enabled"
curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
embeds = self._embed_tokens(tokens)
masked_embeds = embeds * tokens_mask.unsqueeze(-1)
h = masked_embeds.sum(dim=2)
h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(
dtype=dtype
)
last_h = h[:, -1, :]
c0_logits = self.codebook0_head(last_h)
c0_sample = sample_topk(c0_logits, topk, temperature)
c0_embed = self._embed_audio(0, c0_sample)
curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1)
curr_sample = c0_sample.clone()
curr_pos = (
torch.arange(0, curr_h.size(1), device=curr_h.device)
.unsqueeze(0)
.repeat(curr_h.size(0), 1)
)
# Decoder caches must be reset every frame.
self.decoder.reset_caches()
for i in range(1, self.config.audio_num_codebooks):
curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
decoder_h = self.decoder(
self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask
).to(dtype=dtype)
ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1])
ci_sample = sample_topk(ci_logits, 10, 0.75) # fix to 10 and 0.75
ci_embed = self._embed_audio(i, ci_sample)
curr_h = ci_embed
curr_sample = torch.cat([curr_sample, ci_sample], dim=1)
curr_pos = curr_pos[:, -1:] + 1
return curr_sample
def reset_caches(self):
self.backbone.reset_caches()
self.decoder.reset_caches()
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
return self.audio_embeddings(tokens + codebook * self.config.audio_vocab_size)
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2)
audio_tokens = tokens[:, :, :-1] + (
self.config.audio_vocab_size
* torch.arange(self.config.audio_num_codebooks, device=tokens.device)
)
audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape(
tokens.size(0), tokens.size(1), self.config.audio_num_codebooks, -1
)
return torch.cat([audio_embeds, text_embeds], dim=-2)
if __name__ == "__main__":
MIMI_SAMPLE_RATE = 24000
BACKBONE_FLAVOR = "qwen-3b"
DECODER_FLAVOR = "qwen-500m"
TEXT_VOCAB_SIZE = 128256
AUDIO_VOCAB_SIZE = 2051
AUDIO_NUM_CODEBOOKS = 32
config = ModelArgs(
backbone_flavor=BACKBONE_FLAVOR,
decoder_flavor=DECODER_FLAVOR,
text_vocab_size=TEXT_VOCAB_SIZE,
audio_vocab_size=AUDIO_VOCAB_SIZE,
audio_num_codebooks=AUDIO_NUM_CODEBOOKS,
decoder_loss_weight=0.5,
use_text_loss=True,
)
model = Model(config)
|