Spaces:
Runtime error
Runtime error
File size: 5,288 Bytes
71cd91e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks
and remove unnecessary dependencies.
"""
import warnings
import numpy as np
from typing import Union, Optional
def hertz_to_mel(
freq: Union[float, np.ndarray], mel_scale: str = "htk"
) -> Union[float, np.ndarray]:
if mel_scale not in ["slaney", "htk", "kaldi"]:
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
if mel_scale == "htk":
return 2595.0 * np.log10(1.0 + (freq / 700.0))
elif mel_scale == "kaldi":
return 1127.0 * np.log(1.0 + (freq / 700.0))
min_log_hertz = 1000.0
min_log_mel = 15.0
logstep = 27.0 / np.log(6.4)
mels = 3.0 * freq / 200.0
if isinstance(freq, np.ndarray):
log_region = freq >= min_log_hertz
mels[log_region] = (
min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep
)
elif freq >= min_log_hertz:
mels = min_log_mel + np.log(freq / min_log_hertz) * logstep
return mels
def mel_to_hertz(
mels: Union[float, np.ndarray], mel_scale: str = "htk"
) -> Union[float, np.ndarray]:
if mel_scale not in ["slaney", "htk", "kaldi"]:
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
if mel_scale == "htk":
return 700.0 * (np.power(10, mels / 2595.0) - 1.0)
elif mel_scale == "kaldi":
return 700.0 * (np.exp(mels / 1127.0) - 1.0)
min_log_hertz = 1000.0
min_log_mel = 15.0
logstep = np.log(6.4) / 27.0
freq = 200.0 * mels / 3.0
if isinstance(mels, np.ndarray):
log_region = mels >= min_log_mel
freq[log_region] = min_log_hertz * np.exp(
logstep * (mels[log_region] - min_log_mel)
)
elif mels >= min_log_mel:
freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel))
return freq
def _create_triangular_filter_bank(
fft_freqs: np.ndarray, filter_freqs: np.ndarray
) -> np.ndarray:
"""
Creates a triangular filter bank.
Adapted from *torchaudio* and *librosa*.
Args:
fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`):
Discrete frequencies of the FFT bins in Hz.
filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`):
Center frequencies of the triangular filters to create, in Hz.
Returns:
`np.ndarray` of shape `(num_frequency_bins, num_mel_filters)`
"""
filter_diff = np.diff(filter_freqs)
slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1)
down_slopes = -slopes[:, :-2] / filter_diff[:-1]
up_slopes = slopes[:, 2:] / filter_diff[1:]
return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes))
def mel_filter_bank(
num_frequency_bins: int,
num_mel_filters: int,
min_frequency: float,
max_frequency: float,
sampling_rate: int,
norm: Optional[str] = None,
mel_scale: str = "htk",
triangularize_in_mel_space: bool = False,
) -> np.ndarray:
if norm is not None and norm != "slaney":
raise ValueError('norm must be one of None or "slaney"')
# center points of the triangular mel filters
mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale)
mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale)
mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2)
filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale)
if triangularize_in_mel_space:
# frequencies of FFT bins in Hz, but filters triangularized in mel space
fft_bin_width = sampling_rate / (num_frequency_bins * 2)
fft_freqs = hertz_to_mel(
fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale
)
filter_freqs = mel_freqs
else:
# frequencies of FFT bins in Hz
fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins)
mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs)
if norm is not None and norm == "slaney":
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (
filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters]
)
mel_filters *= np.expand_dims(enorm, 0)
if (mel_filters.max(axis=0) == 0.0).any():
warnings.warn(
"At least one mel filter has all zero values. "
f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. "
f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low."
)
return mel_filters
|