Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from pipeline import preprocessing_pipeline, conversational_rag | |
| from pipeline import system_message, user_message | |
| from haystack.dataclasses import ChatMessage | |
| import time | |
| import os | |
| def process_files_into_docs(files, progress=gr.Progress()): | |
| if isinstance(files, dict): | |
| files = [files] | |
| if not files: | |
| return 'No file uploaded!' | |
| preprocessing_pipeline.run({'file_type_router': {'sources': files}}) | |
| return "Database created🤗🤗" | |
| def rag(history, question): | |
| if history is None: | |
| history = [] | |
| messages = [system_message, user_message] | |
| res = conversational_rag.run( | |
| data = { | |
| 'query_rephrase_prompt_builder' : {'query': question}, | |
| 'prompt_builder': {'template': messages, 'query': question}, | |
| 'memory_joiner': {'values': [ChatMessage.from_user(question)]} | |
| }, | |
| include_outputs_from=['llm', 'query_rephrase_llm'] | |
| ) | |
| bot_message = res['llm']['replies'][0].content | |
| streamed_message = "" | |
| for token in bot_message.split(): | |
| streamed_message += f"{token} " | |
| yield history + [(question, streamed_message.strip())], " " | |
| time.sleep(0.05) | |
| history.append((question, bot_message)) | |
| yield history, " " | |
| EXAMPLE_FILE = "RAG Survey.pdf" | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.HTML("<center><h1>TalkToFiles - Query your documents! 📂📄</h1></center>") | |
| gr.Markdown("""##### This AI chatbot🤖 can help you chat with your documents. Can upload <b>Text(.txt), PDF(.pdf) and Markdown(.md)</b> files. | |
| <b>Please do not upload confidential documents.</b>""") | |
| with gr.Row(): | |
| with gr.Column(scale=86): | |
| gr.Markdown("""#### ***Step 1 - Upload Documents and Initialize RAG pipeline***</br> Can upload Multiple documents""") | |
| with gr.Row(): | |
| file_input = gr.File( | |
| label='Upload Files', | |
| file_count='multiple', | |
| file_types=['.pdf', '.txt', '.md'], | |
| interactive=True | |
| ) | |
| with gr.Row(): | |
| process_files = gr.Button('Create Document store') | |
| with gr.Row(): | |
| result = gr.Textbox(label="Document store", value='Document store not initialized') | |
| # Pre-processing Events | |
| process_files.click( | |
| fn=process_files_into_docs, | |
| inputs=file_input, | |
| outputs=result, | |
| show_progress=True | |
| ) | |
| # def load_example(): | |
| # return [EXAMPLE_FILE] | |
| # with gr.Row(): | |
| # gr.Examples( | |
| # examples=[[EXAMPLE_FILE]], | |
| # inputs=file_input, | |
| # examples_per_page=1, | |
| # label="Click to upload an example" | |
| # ).dataset.click(fn=load_example, inputs=[], outputs=file_input) | |
| with gr.Column(scale=200): | |
| gr.Markdown("""#### ***Step 2 - Chat with your docs*** """) | |
| chatbot = gr.Chatbot(label='ChatBot', type="messages") # <-- Added type="messages" to fix deprecation | |
| user_input = gr.Textbox(label='Enter your query', placeholder='Type here...') | |
| with gr.Row(): | |
| submit_button = gr.Button("Submit") | |
| clear_btn = gr.ClearButton([user_input, chatbot], value='Clear') | |
| submit_button.click( | |
| rag, | |
| inputs=[chatbot, user_input], | |
| outputs=[chatbot, user_input] | |
| ) | |
| # Use api_name=None to avoid API generation issues | |
| demo.launch() |