Spaces:
Sleeping
Sleeping
Update gradio_embedding.py
Browse files- gradio_embedding.py +36 -36
gradio_embedding.py
CHANGED
|
@@ -1,37 +1,37 @@
|
|
| 1 |
-
from langchain_community.document_loaders.text import TextLoader
|
| 2 |
-
from langchain_community.vectorstores import Chroma
|
| 3 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 4 |
-
from setup import *
|
| 5 |
-
|
| 6 |
-
# Use a relative path:
|
| 7 |
-
file = "
|
| 8 |
-
|
| 9 |
-
loader = TextLoader(file_path=file)
|
| 10 |
-
pages = []
|
| 11 |
-
for page in loader.load():
|
| 12 |
-
pages.append(page)
|
| 13 |
-
|
| 14 |
-
docs = loader.load()
|
| 15 |
-
|
| 16 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 17 |
-
chunk_size=500,
|
| 18 |
-
chunk_overlap=50,
|
| 19 |
-
add_start_index=True,
|
| 20 |
-
separators=["\n", "\n\n"]
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
all_splits = text_splitter.split_documents(docs)
|
| 24 |
-
print(f"Split blog post into {len(all_splits)} sub-documents.")
|
| 25 |
-
|
| 26 |
-
# Instead of Windows absolute path for persistence:
|
| 27 |
-
# persist_directory = "D:\\Education\\AI\\AI-Agents\\Agentic-RAG"
|
| 28 |
-
|
| 29 |
-
# Use a relative path:
|
| 30 |
-
persist_directory = "./chroma_db" # This will create a chroma_db folder in your app's directory
|
| 31 |
-
|
| 32 |
-
vector_store = Chroma.from_documents(
|
| 33 |
-
documents=all_splits,
|
| 34 |
-
collection_name='sagemaker-chroma',
|
| 35 |
-
persist_directory=persist_directory,
|
| 36 |
-
embedding=embeddings
|
| 37 |
)
|
|
|
|
| 1 |
+
from langchain_community.document_loaders.text import TextLoader
|
| 2 |
+
from langchain_community.vectorstores import Chroma
|
| 3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 4 |
+
from setup import *
|
| 5 |
+
|
| 6 |
+
# Use a relative path:
|
| 7 |
+
file = "Amazon_sagemaker_Faq.txt" # Assuming you have a data folder in your project
|
| 8 |
+
|
| 9 |
+
loader = TextLoader(file_path=file)
|
| 10 |
+
pages = []
|
| 11 |
+
for page in loader.load():
|
| 12 |
+
pages.append(page)
|
| 13 |
+
|
| 14 |
+
docs = loader.load()
|
| 15 |
+
|
| 16 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 17 |
+
chunk_size=500,
|
| 18 |
+
chunk_overlap=50,
|
| 19 |
+
add_start_index=True,
|
| 20 |
+
separators=["\n", "\n\n"]
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
all_splits = text_splitter.split_documents(docs)
|
| 24 |
+
print(f"Split blog post into {len(all_splits)} sub-documents.")
|
| 25 |
+
|
| 26 |
+
# Instead of Windows absolute path for persistence:
|
| 27 |
+
# persist_directory = "D:\\Education\\AI\\AI-Agents\\Agentic-RAG"
|
| 28 |
+
|
| 29 |
+
# Use a relative path:
|
| 30 |
+
persist_directory = "./chroma_db" # This will create a chroma_db folder in your app's directory
|
| 31 |
+
|
| 32 |
+
vector_store = Chroma.from_documents(
|
| 33 |
+
documents=all_splits,
|
| 34 |
+
collection_name='sagemaker-chroma',
|
| 35 |
+
persist_directory=persist_directory,
|
| 36 |
+
embedding=embeddings
|
| 37 |
)
|