Spaces:
Runtime error
Runtime error
| import math | |
| import logging | |
| import numpy as np | |
| import torch | |
| from torch import optim | |
| from torch.nn import functional as F | |
| from torch.utils.data import DataLoader | |
| from models.base import BaseLearner | |
| from utils.inc_net import CosineIncrementalNet | |
| from utils.toolkit import tensor2numpy | |
| epochs = 100 | |
| lrate = 0.1 | |
| ft_epochs = 20 | |
| ft_lrate = 0.005 | |
| batch_size = 32 | |
| lambda_c_base = 5 | |
| lambda_f_base = 1 | |
| nb_proxy = 10 | |
| weight_decay = 5e-4 | |
| num_workers = 4 | |
| """ | |
| Distillation losses: POD-flat (lambda_f=1) + POD-spatial (lambda_c=5) | |
| NME results are shown. | |
| The reproduced results are not in line with the reported results. | |
| Maybe I missed something... | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | Classifier | Steps | Reported (%) | Reproduced (%) | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | Cosine (k=1) | 50 | 56.69 | 55.49 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-CE (k=10) | 50 | 59.86 | 55.69 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-NCA (k=10) | 50 | 61.40 | 56.50 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-CE (k=10) | 25 | ----- | 59.16 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-NCA (k=10) | 25 | 62.71 | 59.79 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-CE (k=10) | 10 | ----- | 62.59 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-NCA (k=10) | 10 | 64.03 | 62.81 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-CE (k=10) | 5 | ----- | 64.16 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| | LSC-NCA (k=10) | 5 | 64.48 | 64.37 | | |
| +--------------------+--------------------+--------------------+--------------------+ | |
| """ | |
| class PODNet(BaseLearner): | |
| def __init__(self, args): | |
| super().__init__(args) | |
| self._network = CosineIncrementalNet( | |
| args, pretrained=False, nb_proxy=nb_proxy | |
| ) | |
| self._class_means = None | |
| def after_task(self): | |
| self._old_network = self._network.copy().freeze() | |
| self._known_classes = self._total_classes | |
| logging.info("Exemplar size: {}".format(self.exemplar_size)) | |
| def incremental_train(self, data_manager): | |
| self._cur_task += 1 | |
| self._total_classes = self._known_classes + data_manager.get_task_size( | |
| self._cur_task | |
| ) | |
| self.task_size = self._total_classes - self._known_classes | |
| self._network.update_fc(self._total_classes, self._cur_task) | |
| logging.info( | |
| "Learning on {}-{}".format(self._known_classes, self._total_classes) | |
| ) | |
| train_dset = data_manager.get_dataset( | |
| np.arange(self._known_classes, self._total_classes), | |
| source="train", | |
| mode="train", | |
| appendent=self._get_memory(), | |
| ) | |
| test_dset = data_manager.get_dataset( | |
| np.arange(0, self._total_classes), source="test", mode="test" | |
| ) | |
| self.train_loader = DataLoader( | |
| train_dset, batch_size=batch_size, shuffle=True, num_workers=num_workers | |
| ) | |
| self.test_loader = DataLoader( | |
| test_dset, batch_size=batch_size, shuffle=False, num_workers=num_workers | |
| ) | |
| self._train(data_manager, self.train_loader, self.test_loader) | |
| self.build_rehearsal_memory(data_manager, self.samples_per_class) | |
| def _train(self, data_manager, train_loader, test_loader): | |
| if self._cur_task == 0: | |
| self.factor = 0 | |
| else: | |
| self.factor = math.sqrt( | |
| self._total_classes / (self._total_classes - self._known_classes) | |
| ) | |
| logging.info("Adaptive factor: {}".format(self.factor)) | |
| self._network.to(self._device) | |
| if self._old_network is not None: | |
| self._old_network.to(self._device) | |
| if self._cur_task == 0: | |
| network_params = self._network.parameters() | |
| else: | |
| ignored_params = list(map(id, self._network.fc.fc1.parameters())) | |
| base_params = filter( | |
| lambda p: id(p) not in ignored_params, self._network.parameters() | |
| ) | |
| network_params = [ | |
| {"params": base_params, "lr": lrate, "weight_decay": weight_decay}, | |
| { | |
| "params": self._network.fc.fc1.parameters(), | |
| "lr": 0, | |
| "weight_decay": 0, | |
| }, | |
| ] | |
| optimizer = optim.SGD( | |
| network_params, lr=lrate, momentum=0.9, weight_decay=weight_decay | |
| ) | |
| scheduler = optim.lr_scheduler.CosineAnnealingLR( | |
| optimizer=optimizer, T_max=epochs | |
| ) | |
| self._run(train_loader, test_loader, optimizer, scheduler, epochs) | |
| if self._cur_task == 0: | |
| return | |
| logging.info( | |
| "Finetune the network (classifier part) with the undersampled dataset!" | |
| ) | |
| if self._fixed_memory: | |
| finetune_samples_per_class = self._memory_per_class | |
| self._construct_exemplar_unified(data_manager, finetune_samples_per_class) | |
| else: | |
| finetune_samples_per_class = self._memory_size // self._known_classes | |
| self._reduce_exemplar(data_manager, finetune_samples_per_class) | |
| self._construct_exemplar(data_manager, finetune_samples_per_class) | |
| finetune_train_dataset = data_manager.get_dataset( | |
| [], source="train", mode="train", appendent=self._get_memory() | |
| ) | |
| finetune_train_loader = DataLoader( | |
| finetune_train_dataset, | |
| batch_size=batch_size, | |
| shuffle=True, | |
| num_workers=num_workers, | |
| ) | |
| logging.info( | |
| "The size of finetune dataset: {}".format(len(finetune_train_dataset)) | |
| ) | |
| ignored_params = list(map(id, self._network.fc.fc1.parameters())) | |
| base_params = filter( | |
| lambda p: id(p) not in ignored_params, self._network.parameters() | |
| ) | |
| network_params = [ | |
| {"params": base_params, "lr": ft_lrate, "weight_decay": weight_decay}, | |
| {"params": self._network.fc.fc1.parameters(), "lr": 0, "weight_decay": 0}, | |
| ] | |
| optimizer = optim.SGD( | |
| network_params, lr=ft_lrate, momentum=0.9, weight_decay=weight_decay | |
| ) | |
| scheduler = optim.lr_scheduler.CosineAnnealingLR( | |
| optimizer=optimizer, T_max=ft_epochs | |
| ) | |
| self._run(finetune_train_loader, test_loader, optimizer, scheduler, ft_epochs) | |
| if self._fixed_memory: | |
| self._data_memory = self._data_memory[ | |
| : -self._memory_per_class * self.task_size | |
| ] | |
| self._targets_memory = self._targets_memory[ | |
| : -self._memory_per_class * self.task_size | |
| ] | |
| assert ( | |
| len( | |
| np.setdiff1d( | |
| self._targets_memory, np.arange(0, self._known_classes) | |
| ) | |
| ) | |
| == 0 | |
| ), "Exemplar error!" | |
| def _run(self, train_loader, test_loader, optimizer, scheduler, epk): | |
| for epoch in range(1, epk + 1): | |
| self._network.train() | |
| lsc_losses = 0.0 | |
| spatial_losses = 0.0 | |
| flat_losses = 0.0 | |
| correct, total = 0, 0 | |
| for i, (_, inputs, targets) in enumerate(train_loader): | |
| inputs, targets = inputs.to(self._device), targets.to(self._device) | |
| outputs = self._network(inputs) | |
| logits = outputs["logits"] | |
| features = outputs["features"] | |
| fmaps = outputs["fmaps"] | |
| lsc_loss = nca(logits, targets) | |
| spatial_loss = 0.0 | |
| flat_loss = 0.0 | |
| if self._old_network is not None: | |
| with torch.no_grad(): | |
| old_outputs = self._old_network(inputs) | |
| old_features = old_outputs["features"] | |
| old_fmaps = old_outputs["fmaps"] | |
| flat_loss = ( | |
| F.cosine_embedding_loss( | |
| features, | |
| old_features.detach(), | |
| torch.ones(inputs.shape[0]).to(self._device), | |
| ) | |
| * self.factor | |
| * lambda_f_base | |
| ) | |
| spatial_loss = ( | |
| pod_spatial_loss(fmaps, old_fmaps) * self.factor * lambda_c_base | |
| ) | |
| loss = lsc_loss + flat_loss + spatial_loss | |
| optimizer.zero_grad() | |
| loss.backward() | |
| optimizer.step() | |
| lsc_losses += lsc_loss.item() | |
| spatial_losses += ( | |
| spatial_loss.item() if self._cur_task != 0 else spatial_loss | |
| ) | |
| flat_losses += flat_loss.item() if self._cur_task != 0 else flat_loss | |
| _, preds = torch.max(logits, dim=1) | |
| correct += preds.eq(targets.expand_as(preds)).cpu().sum() | |
| total += len(targets) | |
| if scheduler is not None: | |
| scheduler.step() | |
| train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2) | |
| test_acc = self._compute_accuracy(self._network, test_loader) | |
| info1 = "Task {}, Epoch {}/{} (LR {:.5f}) => ".format( | |
| self._cur_task, epoch, epk, optimizer.param_groups[0]["lr"] | |
| ) | |
| info2 = "LSC_loss {:.2f}, Spatial_loss {:.2f}, Flat_loss {:.2f}, Train_acc {:.2f}, Test_acc {:.2f}".format( | |
| lsc_losses / (i + 1), | |
| spatial_losses / (i + 1), | |
| flat_losses / (i + 1), | |
| train_acc, | |
| test_acc, | |
| ) | |
| logging.info(info1 + info2) | |
| def pod_spatial_loss(old_fmaps, fmaps, normalize=True): | |
| """ | |
| a, b: list of [bs, c, w, h] | |
| """ | |
| loss = torch.tensor(0.0).to(fmaps[0].device) | |
| for i, (a, b) in enumerate(zip(old_fmaps, fmaps)): | |
| assert a.shape == b.shape, "Shape error" | |
| a = torch.pow(a, 2) | |
| b = torch.pow(b, 2) | |
| a_h = a.sum(dim=3).view(a.shape[0], -1) # [bs, c*w] | |
| b_h = b.sum(dim=3).view(b.shape[0], -1) # [bs, c*w] | |
| a_w = a.sum(dim=2).view(a.shape[0], -1) # [bs, c*h] | |
| b_w = b.sum(dim=2).view(b.shape[0], -1) # [bs, c*h] | |
| a = torch.cat([a_h, a_w], dim=-1) | |
| b = torch.cat([b_h, b_w], dim=-1) | |
| if normalize: | |
| a = F.normalize(a, dim=1, p=2) | |
| b = F.normalize(b, dim=1, p=2) | |
| layer_loss = torch.mean(torch.frobenius_norm(a - b, dim=-1)) | |
| loss += layer_loss | |
| return loss / len(fmaps) | |
| def nca( | |
| similarities, | |
| targets, | |
| class_weights=None, | |
| focal_gamma=None, | |
| scale=1.0, | |
| margin=0.6, | |
| exclude_pos_denominator=True, | |
| hinge_proxynca=False, | |
| memory_flags=None, | |
| ): | |
| margins = torch.zeros_like(similarities) | |
| margins[torch.arange(margins.shape[0]), targets] = margin | |
| similarities = scale * (similarities - margin) | |
| if exclude_pos_denominator: | |
| similarities = similarities - similarities.max(1)[0].view(-1, 1) | |
| disable_pos = torch.zeros_like(similarities) | |
| disable_pos[torch.arange(len(similarities)), targets] = similarities[ | |
| torch.arange(len(similarities)), targets | |
| ] | |
| numerator = similarities[torch.arange(similarities.shape[0]), targets] | |
| denominator = similarities - disable_pos | |
| losses = numerator - torch.log(torch.exp(denominator).sum(-1)) | |
| if class_weights is not None: | |
| losses = class_weights[targets] * losses | |
| losses = -losses | |
| if hinge_proxynca: | |
| losses = torch.clamp(losses, min=0.0) | |
| loss = torch.mean(losses) | |
| return loss | |
| return F.cross_entropy( | |
| similarities, targets, weight=class_weights, reduction="mean" | |
| ) | |