Spaces:
Runtime error
Runtime error
app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import re
|
| 4 |
+
import os
|
| 5 |
+
import base64
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 7 |
+
import torch
|
| 8 |
+
import math
|
| 9 |
+
|
| 10 |
+
# Realistic placeholder dataframe (added Abstract field)
|
| 11 |
+
data = {
|
| 12 |
+
"Title": [
|
| 13 |
+
"The impact of climate change on biodiversity",
|
| 14 |
+
"Deep learning algorithms for image classification",
|
| 15 |
+
"Quantum computing and its applications in cryptography",
|
| 16 |
+
"Machine learning approaches for natural language processing",
|
| 17 |
+
"Modeling the effects of climate change on agricultural production",
|
| 18 |
+
"Graph neural networks for social network analysis",
|
| 19 |
+
"Biodiversity conservation strategies in the face of climate change",
|
| 20 |
+
"Exploring the potential of quantum computing in drug discovery",
|
| 21 |
+
"A survey of reinforcement learning algorithms and applications",
|
| 22 |
+
"The role of artificial intelligence in combating climate change",
|
| 23 |
+
]*10,
|
| 24 |
+
"Authors": [
|
| 25 |
+
"Smith, J.; Doe, J.; Brown, M.",
|
| 26 |
+
"Garcia, L.; Johnson, N.; Patel, K.",
|
| 27 |
+
"Kim, D.; Taylor, R.; Yamamoto, Y.",
|
| 28 |
+
"Roberts, A.; Jackson, T.; Davis, M.",
|
| 29 |
+
"Turner, B.; Adams, C.; Evans, D.",
|
| 30 |
+
"Baker, E.; Stewart, F.; Roberts, G.",
|
| 31 |
+
"Nelson, H.; Mitchell, I.; Cooper, J.",
|
| 32 |
+
"Parker, K.; Lewis, L.; Jenkins, M.",
|
| 33 |
+
"Edwards, N.; Harrison, O.; Simmons, P.",
|
| 34 |
+
"Fisher, Q.; Grant, R.; Turner, S.",
|
| 35 |
+
]*10,
|
| 36 |
+
"Year": [2020, 2019, 2018, 2021, 2019, 2020, 2018, 2021, 2019, 2020]*10,
|
| 37 |
+
"Keywords": [
|
| 38 |
+
"climate change, biodiversity, ecosystems",
|
| 39 |
+
"deep learning, image classification, convolutional neural networks",
|
| 40 |
+
"quantum computing, cryptography, Shor's algorithm",
|
| 41 |
+
"machine learning, natural language processing, text analysis",
|
| 42 |
+
"climate change, agriculture, crop modeling",
|
| 43 |
+
"graph neural networks, social network analysis, machine learning",
|
| 44 |
+
"biodiversity conservation, climate change, environmental management",
|
| 45 |
+
"quantum computing, drug discovery, computational chemistry",
|
| 46 |
+
"reinforcement learning, algorithms, applications",
|
| 47 |
+
"artificial intelligence, climate change, mitigation strategies",
|
| 48 |
+
]*10,
|
| 49 |
+
"Subject_Area": [
|
| 50 |
+
"Environmental Science",
|
| 51 |
+
"Computer Science",
|
| 52 |
+
"Physics",
|
| 53 |
+
"Computer Science",
|
| 54 |
+
"Environmental Science",
|
| 55 |
+
"Computer Science",
|
| 56 |
+
"Environmental Science",
|
| 57 |
+
"Physics",
|
| 58 |
+
"Computer Science",
|
| 59 |
+
"Environmental Science",
|
| 60 |
+
]*10,
|
| 61 |
+
"Journal": [
|
| 62 |
+
"Nature",
|
| 63 |
+
"IEEE Transactions on Pattern Analysis and Machine Intelligence",
|
| 64 |
+
"Physical Review Letters",
|
| 65 |
+
"Journal of Machine Learning Research",
|
| 66 |
+
"Agricultural Systems",
|
| 67 |
+
"IEEE Transactions on Neural Networks and Learning Systems",
|
| 68 |
+
"Conservation Biology",
|
| 69 |
+
"Journal of Chemical Information and Modeling",
|
| 70 |
+
"Neural Computing and Applications",
|
| 71 |
+
"Science",
|
| 72 |
+
]*10,
|
| 73 |
+
"Is_Open_Access": [True, False, True, False, True, False, True, False, True, False]*10,
|
| 74 |
+
"Abstract": [
|
| 75 |
+
"This study analyzes the impact of climate change on biodiversity and ecosystem health...",
|
| 76 |
+
"We present novel deep learning algorithms for image classification using convolutional neural networks...",
|
| 77 |
+
"Quantum computing has the potential to revolutionize cryptography, and in this paper, we discuss...",
|
| 78 |
+
"Natural language processing is a growing field in machine learning, and in this review, we explore...",
|
| 79 |
+
"Climate change poses significant challenges to agriculture, and this paper investigates...",
|
| 80 |
+
"Graph neural networks have gained popularity in recent years for their ability to model complex...",
|
| 81 |
+
"Biodiversity conservation is crucial in the face of climate change, and this study outlines...",
|
| 82 |
+
"Quantum computing offers new opportunities for drug discovery, and in this paper, we analyze...",
|
| 83 |
+
"Reinforcement learning is a powerful machine learning paradigm, and in this survey, we...",
|
| 84 |
+
"Artificial intelligence has the potential to help combat climate change by providing new...",
|
| 85 |
+
]*10,
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def rank_results(query, filtered_papers):
|
| 90 |
+
# Generate embeddings for user query and filtered paper abstracts
|
| 91 |
+
abstracts = [abstract for abstract in filtered_papers['Abstract']]
|
| 92 |
+
features = tokenizer([query for _ in range(len(abstracts))], abstracts, padding=True, truncation=True, return_tensors="pt")
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
scores = model(**features).logits
|
| 95 |
+
|
| 96 |
+
# Rank papers based on similarity scores
|
| 97 |
+
filtered_papers['Similarity Score'] = scores.numpy()
|
| 98 |
+
ranked_papers = filtered_papers.sort_values(by='Similarity Score', ascending=False)
|
| 99 |
+
|
| 100 |
+
return ranked_papers
|
| 101 |
+
|
| 102 |
+
# Function to generate a download link for a PDF file
|
| 103 |
+
def generate_pdf_link(pdf_file_path, link_text):
|
| 104 |
+
with open(pdf_file_path, "rb") as f:
|
| 105 |
+
pdf_data = f.read()
|
| 106 |
+
|
| 107 |
+
b64_pdf_data = base64.b64encode(pdf_data).decode()
|
| 108 |
+
href = f'<a href="data:application/octet-stream;base64,{b64_pdf_data}" download="{os.path.basename(pdf_file_path)}">{link_text}</a>'
|
| 109 |
+
return href
|
| 110 |
+
|
| 111 |
+
# Function to filter papers based on user input
|
| 112 |
+
def filter_papers(papers,year_range, is_open_access, abstract_query):
|
| 113 |
+
if year_range:
|
| 114 |
+
papers = papers[(papers['Year'] >= year_range[0]) & (papers['Year'] <= year_range[1])]
|
| 115 |
+
if is_open_access is not None:
|
| 116 |
+
papers = papers[papers['Is_Open_Access'] == is_open_access]
|
| 117 |
+
|
| 118 |
+
return papers
|
| 119 |
+
|
| 120 |
+
# Function to perform complex boolean search
|
| 121 |
+
def complex_boolean_search(text, query):
|
| 122 |
+
query = re.sub(r'(?<=[A-Za-z0-9])\s+(?=[A-Za-z0-9])', 'AND', query)
|
| 123 |
+
query = re.sub(r'\b(AND|OR)\b', r'\\\1', query)
|
| 124 |
+
query = re.sub(r'(?<=\s)\bNOT\b(?=\s)', ' -', query)
|
| 125 |
+
query = re.sub(r'(?<=\b)\bNOT\b(?=\s)', '-', query)
|
| 126 |
+
try:
|
| 127 |
+
return bool(re.search(query, text, flags=re.IGNORECASE))
|
| 128 |
+
except re.error:
|
| 129 |
+
return False
|
| 130 |
+
|
| 131 |
+
papers_df = pd.DataFrame(data)
|
| 132 |
+
if "model" not in locals():
|
| 133 |
+
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 134 |
+
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 135 |
+
model.eval()
|
| 136 |
+
|
| 137 |
+
# Streamlit interface
|
| 138 |
+
st.set_page_config(page_title="Scientific Article Search", layout="wide")
|
| 139 |
+
|
| 140 |
+
hide_menu_style = """
|
| 141 |
+
<style>
|
| 142 |
+
#MainMenu {visibility: hidden;}
|
| 143 |
+
</style>
|
| 144 |
+
"""
|
| 145 |
+
st.markdown(hide_menu_style, unsafe_allow_html=True)
|
| 146 |
+
|
| 147 |
+
# Add custom CSS to scale the sidebar
|
| 148 |
+
scale = 0.4
|
| 149 |
+
custom_css = """
|
| 150 |
+
<style>
|
| 151 |
+
.filterbar .sidebar-content {{
|
| 152 |
+
transform: scale({scale});
|
| 153 |
+
transform-origin: top left;
|
| 154 |
+
}}
|
| 155 |
+
</style>"""
|
| 156 |
+
|
| 157 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
| 158 |
+
page=1
|
| 159 |
+
per_page=10
|
| 160 |
+
title = ""
|
| 161 |
+
filtered_papers = papers_df
|
| 162 |
+
|
| 163 |
+
# Sidebar for filters
|
| 164 |
+
with st.sidebar:
|
| 165 |
+
st.header("Filters")
|
| 166 |
+
search_query= st.text_input("Query")
|
| 167 |
+
so = st.multiselect(
|
| 168 |
+
label='Search Over',
|
| 169 |
+
options=['Abstract','Everything','Authors'],
|
| 170 |
+
default=['Everything'],
|
| 171 |
+
help='Search and select multiple options from the dropdown menu')
|
| 172 |
+
|
| 173 |
+
sites = st.multiselect(
|
| 174 |
+
label='Search Over',
|
| 175 |
+
options=['OpenAlex','Google Scholar','Base Search','All Sites'],
|
| 176 |
+
default=['All Sites'],
|
| 177 |
+
help='Search and select multiple options from the dropdown menu')
|
| 178 |
+
|
| 179 |
+
year_range = st.slider("Year Range", min_value=1900, max_value=2022, value=(1990, 2022), step=1)
|
| 180 |
+
|
| 181 |
+
is_open_access = st.multiselect(
|
| 182 |
+
label='Open Access',
|
| 183 |
+
options=["All","Yes","No"],
|
| 184 |
+
default="All",
|
| 185 |
+
help='Search and select multiple options from the dropdown menu')
|
| 186 |
+
|
| 187 |
+
# Convert is_open_access to boolean or None
|
| 188 |
+
if is_open_access == "Yes":
|
| 189 |
+
is_open_access = True
|
| 190 |
+
elif is_open_access == "No":
|
| 191 |
+
is_open_access = False
|
| 192 |
+
else:
|
| 193 |
+
is_open_access = None
|
| 194 |
+
|
| 195 |
+
# Filter button
|
| 196 |
+
if st.button("Search"):
|
| 197 |
+
filtered_papers = filter_papers(papers_df, year_range, is_open_access,search_query)
|
| 198 |
+
else:
|
| 199 |
+
filtered_papers = papers_df # Empty dataframe
|
| 200 |
+
|
| 201 |
+
filtered_papers = rank_results(search_query, filtered_papers)
|
| 202 |
+
|
| 203 |
+
if not filtered_papers.empty:
|
| 204 |
+
# Pagination
|
| 205 |
+
no_pages = math.ceil(len(filtered_papers)/per_page)
|
| 206 |
+
|
| 207 |
+
# Generate pagination buttons
|
| 208 |
+
if no_pages == 1:
|
| 209 |
+
pagination_buttons = []
|
| 210 |
+
elif no_pages == 2:
|
| 211 |
+
pagination_buttons = [st.button('1'), st.write('2'), ]
|
| 212 |
+
else:
|
| 213 |
+
pagination_buttons = [st.button(str(page-1) if page > 1 else '1'),
|
| 214 |
+
st.write(str(page)),
|
| 215 |
+
st.button(str(page+1) if page < no_pages else str(no_pages))]
|
| 216 |
+
|
| 217 |
+
# Display results with a more advanced look
|
| 218 |
+
col1, col2 = st.columns([3, 1])
|
| 219 |
+
title, authors, year, journal = st.columns([5, 5, 2, 3])
|
| 220 |
+
with title:
|
| 221 |
+
st.subheader("Title")
|
| 222 |
+
with year:
|
| 223 |
+
st.subheader("Year")
|
| 224 |
+
with journal:
|
| 225 |
+
st.subheader("Journal")
|
| 226 |
+
|
| 227 |
+
# Display paginated results
|
| 228 |
+
start_idx = (page - 1) * per_page
|
| 229 |
+
end_idx = start_idx + per_page
|
| 230 |
+
paginated_papers = filtered_papers.iloc[start_idx:end_idx]
|
| 231 |
+
|
| 232 |
+
for idx, paper in paginated_papers.iterrows():
|
| 233 |
+
st.write("---")
|
| 234 |
+
title, authors, year, journal = st.columns([5, 5, 2, 3])
|
| 235 |
+
|
| 236 |
+
with col1:
|
| 237 |
+
with title:
|
| 238 |
+
st.write(f"{paper['Title']}")
|
| 239 |
+
with authors:
|
| 240 |
+
st.write(f"{paper['Authors']}")
|
| 241 |
+
with year:
|
| 242 |
+
st.write(f"{paper['Year']}")
|
| 243 |
+
with journal:
|
| 244 |
+
st.write(f"{paper['Journal']}")
|
| 245 |
+
abstract = st.expander("Abstract")
|
| 246 |
+
abstract.write(f"{paper['Abstract']}")
|
| 247 |
+
|
| 248 |
+
with col2:
|
| 249 |
+
pdf_file_path = "/content/ADVS-6-1801195.pdf" # Replace with the actual path to the PDF file associated with the paper
|
| 250 |
+
# st.markdown(generate_pdf_link(pdf_file_path, "Show PDF"), unsafe_allow_html=True)
|
| 251 |
+
|
| 252 |
+
st.write("---")
|
| 253 |
+
|
| 254 |
+
# Display pagination buttons
|
| 255 |
+
per_page = st.selectbox("Results per page", [10, 20, 30], index=0)
|
| 256 |
+
pagination_bar = st.columns(3)
|
| 257 |
+
if no_pages > 1:
|
| 258 |
+
with pagination_bar[1]:
|
| 259 |
+
for button in pagination_buttons:
|
| 260 |
+
button
|
| 261 |
+
else:
|
| 262 |
+
st.header("No papers found.")
|