Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,108 +1,61 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
import os, torch
|
| 3 |
-
from langchain.docstore.document import Document
|
| 4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
-
from langchain_community.vectorstores import FAISS
|
| 6 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
-
from docx import Document as DocxDocument
|
| 8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 9 |
-
from huggingface_hub import login, snapshot_download
|
| 10 |
-
import gradio as gr
|
| 11 |
-
|
| 12 |
# -------------------------------
|
| 13 |
-
#
|
| 14 |
# -------------------------------
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 19 |
-
if HF_TOKEN:
|
| 20 |
-
login(token=HF_TOKEN)
|
| 21 |
-
print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face")
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
try:
|
| 28 |
-
snapshot_download(repo_id=repo_id, token=HF_TOKEN, local_dir=local_dir)
|
| 29 |
-
except Exception as e:
|
| 30 |
-
print(f"⚠️ 模型 {repo_id} 無法下載: {e}")
|
| 31 |
-
return None
|
| 32 |
-
return local_dir
|
| 33 |
-
|
| 34 |
-
# 嘗試下載 Primary,失敗就換 Small
|
| 35 |
-
LOCAL_MODEL_DIR = try_download_model(PRIMARY_MODEL)
|
| 36 |
-
if LOCAL_MODEL_DIR is None:
|
| 37 |
-
print("⚠️ 切換到 fallback 模型:小型 GPT2-Chinese")
|
| 38 |
-
LOCAL_MODEL_DIR = try_download_model(FALLBACK_MODEL)
|
| 39 |
-
MODEL_NAME = FALLBACK_MODEL
|
| 40 |
else:
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
print(f"👉 最終使用模型:{MODEL_NAME}")
|
| 44 |
-
|
| 45 |
-
# -------------------------------
|
| 46 |
-
# 2. pipeline 載入
|
| 47 |
-
# -------------------------------
|
| 48 |
-
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR)
|
| 49 |
-
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL_DIR)
|
| 50 |
-
|
| 51 |
-
# 修正 pad_token 缺失問題
|
| 52 |
-
if tokenizer.pad_token is None:
|
| 53 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 54 |
|
| 55 |
-
|
| 56 |
-
"text-generation",
|
| 57 |
-
model=model,
|
| 58 |
-
tokenizer=tokenizer,
|
| 59 |
-
device=-1 # CPU
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
def call_local_inference(prompt, max_new_tokens=256):
|
| 63 |
-
try:
|
| 64 |
-
# 強制補充中文提示
|
| 65 |
-
if "中文" not in prompt:
|
| 66 |
-
prompt += "\n(請用中文回答)"
|
| 67 |
-
|
| 68 |
-
outputs = generator(
|
| 69 |
-
prompt,
|
| 70 |
-
max_new_tokens=max_new_tokens,
|
| 71 |
-
do_sample=True,
|
| 72 |
-
temperature=0.7,
|
| 73 |
-
pad_token_id=tokenizer.pad_token_id
|
| 74 |
-
)
|
| 75 |
-
return outputs[0]["generated_text"]
|
| 76 |
-
except Exception as e:
|
| 77 |
-
return f"(生成失敗:{e})"
|
| 78 |
|
| 79 |
# -------------------------------
|
| 80 |
-
#
|
| 81 |
# -------------------------------
|
| 82 |
def generate_article_progress(query, segments=5):
|
| 83 |
docx_file = "/tmp/generated_article.docx"
|
| 84 |
doc = DocxDocument()
|
| 85 |
doc.add_heading(query, level=1)
|
|
|
|
| 86 |
|
| 87 |
all_text = []
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
for i in range(segments):
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
paragraph = call_local_inference(prompt)
|
| 93 |
all_text.append(paragraph)
|
|
|
|
|
|
|
|
|
|
| 94 |
doc.add_paragraph(paragraph)
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
doc.save(docx_file)
|
| 98 |
-
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}"
|
| 99 |
|
| 100 |
# -------------------------------
|
| 101 |
-
#
|
| 102 |
# -------------------------------
|
| 103 |
with gr.Blocks() as demo:
|
| 104 |
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統")
|
| 105 |
-
gr.Markdown("
|
| 106 |
|
| 107 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 108 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# -------------------------------
|
| 2 |
+
# 0. 載入向量資料庫
|
| 3 |
# -------------------------------
|
| 4 |
+
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 5 |
+
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
DB_PATH = "./faiss_db"
|
| 8 |
+
if os.path.exists(DB_PATH):
|
| 9 |
+
print("載入現有向量資料庫...")
|
| 10 |
+
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
else:
|
| 12 |
+
raise ValueError("❌ 沒找到 faiss_db,請先建立向量資料庫")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# -------------------------------
|
| 17 |
+
# 文章生成(RAG + 檢索片段 + 進度提示 + 即時寫入DOCX)
|
| 18 |
# -------------------------------
|
| 19 |
def generate_article_progress(query, segments=5):
|
| 20 |
docx_file = "/tmp/generated_article.docx"
|
| 21 |
doc = DocxDocument()
|
| 22 |
doc.add_heading(query, level=1)
|
| 23 |
+
doc.save(docx_file) # 先建立空的 docx,避免後面保存出錯
|
| 24 |
|
| 25 |
all_text = []
|
| 26 |
+
|
| 27 |
+
# 🔍 使用 RAG 從 FAISS 檢索相關文獻
|
| 28 |
+
retrieved_docs = retriever.get_relevant_documents(query)
|
| 29 |
+
context_texts = [d.page_content for d in retrieved_docs]
|
| 30 |
+
context = "\n".join([f"{i+1}. {txt}" for i, txt in enumerate(context_texts[:3])])
|
| 31 |
|
| 32 |
for i in range(segments):
|
| 33 |
+
progress_text = f"⏳ 正在生成第 {i+1}/{segments} 段..."
|
| 34 |
+
prompt = (
|
| 35 |
+
f"以下是佛教經論的相關段落:\n{context}\n\n"
|
| 36 |
+
f"請依據上面內容,寫一段約150-200字的中文文章,"
|
| 37 |
+
f"主題:{query}。\n第{i+1}段:"
|
| 38 |
+
)
|
| 39 |
paragraph = call_local_inference(prompt)
|
| 40 |
all_text.append(paragraph)
|
| 41 |
+
|
| 42 |
+
# ✅ 每段生成後立即寫入 DOCX
|
| 43 |
+
doc = DocxDocument(docx_file) # 重新打開現有的檔案
|
| 44 |
doc.add_paragraph(paragraph)
|
| 45 |
+
doc.save(docx_file)
|
| 46 |
+
|
| 47 |
+
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}", context, progress_text
|
| 48 |
+
|
| 49 |
+
final_progress = f"✅ 已完成全部 {segments} 段生成!"
|
| 50 |
+
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}", context, final_progress
|
| 51 |
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# -------------------------------
|
| 54 |
+
# Gradio 介面
|
| 55 |
# -------------------------------
|
| 56 |
with gr.Blocks() as demo:
|
| 57 |
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統")
|
| 58 |
+
gr.Markdown("使用 GPT2-Chinese + FAISS RAG,生成文章。")
|
| 59 |
|
| 60 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 61 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|