Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import torch
|
|
|
|
| 4 |
from transformers import (
|
| 5 |
-
AutoTokenizer,
|
| 6 |
-
AutoModelForCausalLM,
|
| 7 |
pipeline,
|
| 8 |
-
AutoProcessor,
|
| 9 |
-
MusicgenForConditionalGeneration
|
| 10 |
)
|
| 11 |
from scipy.io.wavfile import write
|
| 12 |
import tempfile
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
-
import spaces #
|
| 15 |
|
| 16 |
# Load environment variables (e.g., Hugging Face token)
|
| 17 |
load_dotenv()
|
|
@@ -22,10 +23,31 @@ llama_pipeline = None
|
|
| 22 |
musicgen_model = None
|
| 23 |
musicgen_processor = None
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# ---------------------------------------------------------------------
|
| 26 |
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
| 27 |
# ---------------------------------------------------------------------
|
| 28 |
-
@spaces.GPU(duration=
|
| 29 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
| 30 |
global llama_pipeline
|
| 31 |
if llama_pipeline is None:
|
|
@@ -33,13 +55,7 @@ def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
|
| 33 |
print("Starting model loading...")
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
| 35 |
print("Tokenizer loaded.")
|
| 36 |
-
model =
|
| 37 |
-
model_id,
|
| 38 |
-
use_auth_token=token,
|
| 39 |
-
torch_dtype=torch.float16,
|
| 40 |
-
device_map="auto", # Automatically handles GPU allocation
|
| 41 |
-
trust_remote_code=True
|
| 42 |
-
)
|
| 43 |
print("Model loaded. Initializing pipeline...")
|
| 44 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 45 |
print("Pipeline initialized successfully.")
|
|
@@ -66,7 +82,7 @@ def generate_script(user_input: str, pipeline_llama):
|
|
| 66 |
# ---------------------------------------------------------------------
|
| 67 |
# Load MusicGen Model (Lazy Loading)
|
| 68 |
# ---------------------------------------------------------------------
|
| 69 |
-
@spaces.GPU(duration=
|
| 70 |
def load_musicgen_model():
|
| 71 |
global musicgen_model, musicgen_processor
|
| 72 |
if musicgen_model is None or musicgen_processor is None:
|
|
@@ -83,7 +99,7 @@ def load_musicgen_model():
|
|
| 83 |
# ---------------------------------------------------------------------
|
| 84 |
# Generate Audio
|
| 85 |
# ---------------------------------------------------------------------
|
| 86 |
-
@spaces.GPU(duration=
|
| 87 |
def generate_audio(prompt: str, audio_length: int):
|
| 88 |
global musicgen_model, musicgen_processor
|
| 89 |
if musicgen_model is None or musicgen_processor is None:
|
|
@@ -132,7 +148,7 @@ with gr.Blocks() as demo:
|
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
| 135 |
-
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-
|
| 136 |
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
| 137 |
|
| 138 |
with gr.Row():
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
+
import time
|
| 5 |
from transformers import (
|
| 6 |
+
AutoTokenizer,
|
| 7 |
+
AutoModelForCausalLM,
|
| 8 |
pipeline,
|
| 9 |
+
AutoProcessor,
|
| 10 |
+
MusicgenForConditionalGeneration,
|
| 11 |
)
|
| 12 |
from scipy.io.wavfile import write
|
| 13 |
import tempfile
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
+
import spaces # Hugging Face Spaces library for ZeroGPU support
|
| 16 |
|
| 17 |
# Load environment variables (e.g., Hugging Face token)
|
| 18 |
load_dotenv()
|
|
|
|
| 23 |
musicgen_model = None
|
| 24 |
musicgen_processor = None
|
| 25 |
|
| 26 |
+
# ---------------------------------------------------------------------
|
| 27 |
+
# Helper: Safe Model Loader with Retry Logic
|
| 28 |
+
# ---------------------------------------------------------------------
|
| 29 |
+
def safe_load_model(model_id, token, retries=3, delay=5):
|
| 30 |
+
for attempt in range(retries):
|
| 31 |
+
try:
|
| 32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
+
model_id,
|
| 34 |
+
use_auth_token=token,
|
| 35 |
+
torch_dtype=torch.float16,
|
| 36 |
+
device_map="auto",
|
| 37 |
+
trust_remote_code=True,
|
| 38 |
+
offload_folder="/tmp", # Stream shards
|
| 39 |
+
cache_dir="/tmp" # Cache directory for shard downloads
|
| 40 |
+
)
|
| 41 |
+
return model
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Attempt {attempt + 1} failed: {e}")
|
| 44 |
+
time.sleep(delay)
|
| 45 |
+
raise RuntimeError(f"Failed to load model {model_id} after {retries} attempts")
|
| 46 |
+
|
| 47 |
# ---------------------------------------------------------------------
|
| 48 |
# Load Llama 3 Model with Zero GPU (Lazy Loading)
|
| 49 |
# ---------------------------------------------------------------------
|
| 50 |
+
@spaces.GPU(duration=600) # Increased duration to handle large models
|
| 51 |
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
| 52 |
global llama_pipeline
|
| 53 |
if llama_pipeline is None:
|
|
|
|
| 55 |
print("Starting model loading...")
|
| 56 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
| 57 |
print("Tokenizer loaded.")
|
| 58 |
+
model = safe_load_model(model_id, token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
print("Model loaded. Initializing pipeline...")
|
| 60 |
llama_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 61 |
print("Pipeline initialized successfully.")
|
|
|
|
| 82 |
# ---------------------------------------------------------------------
|
| 83 |
# Load MusicGen Model (Lazy Loading)
|
| 84 |
# ---------------------------------------------------------------------
|
| 85 |
+
@spaces.GPU(duration=600)
|
| 86 |
def load_musicgen_model():
|
| 87 |
global musicgen_model, musicgen_processor
|
| 88 |
if musicgen_model is None or musicgen_processor is None:
|
|
|
|
| 99 |
# ---------------------------------------------------------------------
|
| 100 |
# Generate Audio
|
| 101 |
# ---------------------------------------------------------------------
|
| 102 |
+
@spaces.GPU(duration=600)
|
| 103 |
def generate_audio(prompt: str, audio_length: int):
|
| 104 |
global musicgen_model, musicgen_processor
|
| 105 |
if musicgen_model is None or musicgen_processor is None:
|
|
|
|
| 148 |
|
| 149 |
with gr.Row():
|
| 150 |
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show.")
|
| 151 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-8B") # Using a smaller model for better compatibility
|
| 152 |
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
| 153 |
|
| 154 |
with gr.Row():
|