Spaces:
Sleeping
Sleeping
File size: 11,652 Bytes
d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f6f656f f65990c d08081f f6f656f f65990c f6f656f f65990c d08081f f6f656f d08081f e85255d b46da1b d08081f b46da1b d08081f f65990c b46da1b d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f b46da1b f65990c b46da1b d08081f e85255d d08081f f65990c d08081f b46da1b d08081f e85255d d08081f f65990c d08081f e85255d d08081f e85255d d08081f e85255d d08081f e85255d d08081f e85255d d08081f e85255d f65990c e85255d d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c d08081f e85255d d08081f f65990c d08081f f65990c d08081f f65990c d08081f f65990c e85255d f65990c b46da1b d08081f b46da1b f65990c b46da1b f65990c b46da1b f65990c b46da1b f65990c d08081f e85255d f65990c e85255d b46da1b f65990c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import io
import json
import re
import tempfile
import asyncio
from typing import Optional
import logging
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres.vectorstores import PGVector
from sqlalchemy import create_engine
# --- GRADIO ---
import gradio as gr
# --- SETUP ---
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logging.getLogger('tensorflow').setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
load_dotenv()
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
SHARED_SECRET = os.getenv("SHARED_SECRET")
# --- CONFIG ---
COLLECTION_NAME = "real_estate_embeddings"
EMBEDDING_MODEL = "hkunlp/instructor-large"
ELEVENLABS_VOICE_NAME = "Leo"
PLANNER_MODEL = "gpt-4o-mini"
ANSWERER_MODEL = "gpt-4o"
TABLE_DESCRIPTIONS = """
- "ongoing_projects_source": Details about projects currently under construction.
- "upcoming_projects_source": Information on future planned projects.
- "completed_projects_source": Facts about projects that are already finished.
- "historical_sales_source": Specific sales records, including price, date, and property ID.
- "past_customers_source": Information about previous customers.
- "feedback_source": Customer feedback and ratings for projects.
"""
# --- CLIENTS ---
embeddings = None
vector_store = None
client_openai = OpenAI(api_key=OPENAI_API_KEY)
client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
# --- LIFESPAN ---
@asynccontextmanager
async def lifespan(app: FastAPI):
global embeddings, vector_store
logging.info(f"Loading embedding model: {EMBEDDING_MODEL}")
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
logging.info(f"Connecting to vector store: {COLLECTION_NAME}")
engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True)
vector_store = PGVector(
connection=engine,
collection_name=COLLECTION_NAME,
embeddings=embeddings,
)
logging.info("Vector store ready.")
yield
logging.info("Shutting down.")
app = FastAPI(lifespan=lifespan)
# --- PROMPTS ---
QUERY_FORMULATION_PROMPT = """
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
**Available Tables:**
{table_descriptions}
**User's Query:** "{user_query}"
**Task:**
1. Rephrase into a clear, keyword-focused English search query.
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
3. If no status keyword, set filter_table to null.
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
""".format(table_descriptions=TABLE_DESCRIPTIONS)
ANSWER_SYSTEM_PROMPT = """
You are an expert AI assistant for a premier real estate developer.
## YOUR PERSONA
- You are professional, helpful, and highly knowledgeable. Your tone should be polite and articulate.
## CORE BUSINESS KNOWLEDGE
- **Operational Cities:** We are currently operational in Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata.
- **Property Types:** We offer luxury apartments, villas, and commercial properties.
- **Budget Range:** Our residential properties typically range from 45 lakhs to 5 crores.
## CORE RULES
1. **Language Adaptation:** If the user's original query was in Hinglish, respond in Hinglish. If in English, respond in English.
2. **Fact-Based Answers:** Use the provided CONTEXT to answer the user's question. If the context is empty, use your Core Business Knowledge.
3. **Stay on Topic:** Only answer questions related to real estate.
"""
# --- AUDIO & LLM HELPERS ---
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
for attempt in range(3):
try:
audio_file = io.BytesIO(audio_bytes)
filename = os.path.basename(audio_path) # e.g., "audio.wav"
logging.info(f"Transcribing audio: {filename} ({len(audio_bytes)} bytes)")
transcript = client_openai.audio.transcriptions.create(
model="whisper-1",
file=(filename, audio_file) # β Critical: gives format hint
)
text = transcript.text.strip()
# Hinglish transliteration
if re.search(r'[\u0900-\u097F]', text):
response = client_openai.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}],
temperature=0.0
)
text = response.choices[0].message.content.strip()
logging.info(f"Transcribed: {text}")
return text
except Exception as e:
logging.error(f"Transcription error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
if attempt == 2:
return ""
return ""
def generate_elevenlabs_sync(text: str, voice: str) -> bytes:
for attempt in range(3):
try:
return client_elevenlabs.generate(
text=text,
voice=voice,
model="eleven_multilingual_v2",
output_format="mp3_44100_128"
)
except Exception as e:
logging.error(f"ElevenLabs error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
if attempt == 2:
return b''
return b''
# --- UPDATED formulate_search_plan with logging ---
async def formulate_search_plan(user_query: str) -> dict:
logging.info(f"Formulating search plan for query: {user_query}") # Log incoming query
for attempt in range(3):
try:
response = await run_in_threadpool(
client_openai.chat.completions.create,
model=PLANNER_MODEL,
messages=[{"role": "user", "content": QUERY_FORMULATION_PROMPT.format(user_query=user_query)}],
response_format={"type": "json_object"},
temperature=0.0
)
# Log the raw response BEFORE trying to parse
raw_response_content = response.choices[0].message.content
logging.info(f"Raw Planner LLM response content: {raw_response_content}")
# Try parsing
plan = json.loads(raw_response_content)
logging.info(f"Successfully parsed search plan: {plan}")
return plan
except Exception as e:
# Log the specific error during parsing or API call, with traceback
logging.error(f"Planner error (attempt {attempt+1}): {e}", exc_info=True)
if attempt == 2:
logging.warning("Planner failed after 3 attempts. Using fallback.")
return {"search_query": user_query, "filter_table": None}
# Fallback if loop finishes unexpectedly
logging.error("Planner loop finished unexpectedly. Using fallback.")
return {"search_query": user_query, "filter_table": None}
# --- END UPDATED FUNCTION ---
async def get_agent_response(user_text: str) -> str:
for attempt in range(3):
try:
plan = await formulate_search_plan(user_text)
search_query = plan.get("search_query", user_text)
filter_table = plan.get("filter_table")
search_filter = {"source_table": filter_table} if filter_table else {}
docs = await run_in_threadpool(
vector_store.similarity_search,
search_query, k=3, filter=search_filter
)
if not docs:
docs = await run_in_threadpool(vector_store.similarity_search, search_query, k=3)
context = "\n\n".join([d.page_content for d in docs])
response = await run_in_threadpool(
client_openai.chat.completions.create,
model=ANSWERER_MODEL,
messages=[
{"role": "system", "content": ANSWER_SYSTEM_PROMPT},
{"role": "system", "content": f"CONTEXT:\n{context}"},
{"role": "user", "content": f"Question: {user_text}"}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"RAG error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
if attempt == 2:
return "Sorry, I couldn't respond. Please try again."
return "Sorry, I couldn't respond."
# --- AUTH ENDPOINT ---
class TextQuery(BaseModel):
query: str
async def verify_token(x_auth_token: str = Header(...)):
if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
logging.warning("Auth failed for /test-text-query")
raise HTTPException(status_code=401, detail="Invalid token")
logging.info("Auth passed")
@app.post("/test-text-query", dependencies=[Depends(verify_token)])
async def test_text_query_endpoint(query: TextQuery):
logging.info(f"Text query: {query.query}")
response = await get_agent_response(query.query)
return {"response": response}
# --- GRADIO AUDIO PROCESSING ---
async def process_audio(audio_path):
if not audio_path or not os.path.exists(audio_path):
return None, "No valid audio file received."
try:
# Read raw bytes
with open(audio_path, "rb") as f:
audio_bytes = f.read()
if len(audio_bytes) == 0:
return None, "Empty audio file."
# 1. Transcribe β pass path + bytes
user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
if not user_text:
return None, "Couldn't understand audio. Try again."
logging.info(f"User: {user_text}")
# 2. AI Response
agent_response = await get_agent_response(user_text)
if not agent_response:
return None, "No response generated."
logging.info(f"AI: {agent_response[:100]}...")
# 3. Generate Speech
ai_audio_bytes = await run_in_threadpool(
generate_elevenlabs_sync, agent_response, ELEVENLABS_VOICE_NAME
)
if not ai_audio_bytes:
return None, "Failed to generate voice."
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
f.write(ai_audio_bytes)
out_path = f.name
return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"
except Exception as e:
logging.error(f"Audio processing error: {e}", exc_info=True) # Added exc_info
return None, f"Error: {str(e)}"
# --- GRADIO UI ---
with gr.Blocks(title="Real Estate AI") as demo:
gr.Markdown("# Real Estate Voice Assistant")
gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")
with gr.Row():
inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak")
out_audio = gr.Audio(label="AI Response", type="filepath")
out_text = gr.Textbox(label="Conversation", lines=8)
inp.change(process_audio, inp, [out_audio, out_text])
# Removed examples to avoid FileNotFoundError with text inputs
# gr.Examples(examples=[], inputs=inp)
# --- MOUNT GRADIO ---
app = gr.mount_gradio_app(app, demo, path="/") |