File size: 1,306 Bytes
aa5cda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""Data display utilities"""
import streamlit as st
import pandas as pd


def display_data_preview(data: list, columns: list):
    """Display data preview"""
    if not data:
        st.warning("No data to display")
        return
    
    st.subheader("πŸ“‹ Data Preview")
    
    # Convert to DataFrame for better display
    df = pd.DataFrame(data)
    
    # Display summary
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Total Rows", len(df))
    with col2:
        st.metric("Total Columns", len(df.columns))
    with col3:
        st.metric("Memory Usage", f"{df.memory_usage().sum() / 1024:.2f} KB")
    
    st.divider()
    
    # Display data table
    st.dataframe(df, use_container_width=True)
    
    st.divider()
    
    # Display statistics
    st.subheader("πŸ“Š Data Statistics")
    st.dataframe(df.describe(), use_container_width=True)


def display_analysis_results(results: dict):
    """Display analysis results"""
    st.subheader("πŸ“ˆ Analysis Results")
    
    if "error" in results:
        st.error(f"Analysis failed: {results['error']}")
        return
    
    # Display results based on type
    if "results" in results:
        st.write(results["results"])
    
    if "summary" in results:
        st.info(f"**Summary:** {results['summary']}")