Spaces:
Sleeping
Sleeping
File size: 11,253 Bytes
814316f 94b7bfa 814316f e3d2b77 814316f c85ec07 e3d2b77 c85ec07 e3d2b77 c85ec07 e3d2b77 c85ec07 e3d2b77 c85ec07 814316f 94b7bfa 814316f 94b7bfa 814316f 94b7bfa c85ec07 94b7bfa c85ec07 94b7bfa 814316f 94b7bfa 814316f 94b7bfa 9f22029 c85ec07 94b7bfa 814316f 94b7bfa 814316f ca8b7a3 814316f ca8b7a3 814316f 94b7bfa 814316f 9f22029 ca8b7a3 9f22029 814316f c85ec07 0d96540 814316f c85ec07 ca37c17 814316f 94b7bfa 814316f c85ec07 814316f 24b4795 0d96540 c85ec07 0d96540 814316f ca37c17 814316f c85ec07 ca37c17 814316f e3d2b77 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 94b7bfa c85ec07 e3d2b77 94b7bfa 814316f 9581ef6 814316f c85ec07 94b7bfa 814316f 9581ef6 814316f e3d2b77 9581ef6 e3d2b77 814316f 94b7bfa 9f22029 c85ec07 814316f 94b7bfa 814316f 9581ef6 814316f c85ec07 e3d2b77 c85ec07 814316f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import streamlit as st
import pandas as pd
import io
# Page configuration
st.set_page_config(
page_title="π LLM Data Analyzer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π LLM Data Analyzer")
st.write("*Analyze data and chat with AI - Powered by Hugging Face Spaces*")
# Store dataframe in session state globally
if "current_df" not in st.session_state:
st.session_state.current_df = None
# AI response function with data awareness
def get_ai_response(prompt, df=None):
"""Generate AI responses with data awareness"""
prompt_lower = prompt.lower()
# If we have data, provide data-specific responses
if df is not None and not df.empty:
# Try to generate data-aware responses
numeric_cols = df.select_dtypes(include=['number']).columns.tolist()
if "average" in prompt_lower or "mean" in prompt_lower:
if numeric_cols:
means = df[numeric_cols].mean()
return f"π **Average values for numeric columns:**\n" + "\n".join([f"- {col}: {means[col]:.2f}" for col in means.index])
return "The data summary shows average values for numeric columns."
elif "max" in prompt_lower or "highest" in prompt_lower:
if numeric_cols:
maxes = df[numeric_cols].max()
return f"π **Maximum values for numeric columns:**\n" + "\n".join([f"- {col}: {maxes[col]}" for col in maxes.index])
return "No numeric columns found to show max values."
elif "min" in prompt_lower or "lowest" in prompt_lower:
if numeric_cols:
mins = df[numeric_cols].min()
return f"π **Minimum values for numeric columns:**\n" + "\n".join([f"- {col}: {mins[col]}" for col in mins.index])
return "No numeric columns found to show min values."
elif "count" in prompt_lower or "rows" in prompt_lower or "how many" in prompt_lower:
return f"π Your dataset has **{len(df)} rows** and **{len(df.columns)} columns**.\n\nColumns: {', '.join(df.columns.tolist())}"
elif "columns" in prompt_lower or "fields" in prompt_lower or "headers" in prompt_lower:
return f"π **Dataset Columns ({len(df.columns)}):**\n" + "\n".join([f"- {col}" for col in df.columns])
elif "summary" in prompt_lower or "overview" in prompt_lower or "describe" in prompt_lower:
summary = f"π **Data Summary:**\n"
summary += f"- Rows: {len(df)}\n"
summary += f"- Columns: {len(df.columns)}\n"
summary += f"- Column names: {', '.join(df.columns.tolist())}\n"
if numeric_cols:
summary += f"- Numeric columns: {', '.join(numeric_cols)}\n"
return summary
elif "trend" in prompt_lower or "pattern" in prompt_lower:
return "The data shows various patterns. Check the statistics above to identify trends in the numeric columns."
else:
# Generic response with data context
return f"I have access to your data with {len(df)} rows and {len(df.columns)} columns: {', '.join(df.columns.tolist())}. Ask me specific questions like: What's the average? Show me the max values? How many rows?"
# Fallback responses (no data)
if "hello" in prompt_lower or "hi" in prompt_lower:
return "Hello! I'm the LLM Data Analyzer. Load some data first, then ask me questions about it!"
elif "what can you do" in prompt_lower or "help" in prompt_lower:
return "I can: 1) Load demo data 2) Analyze your CSV 3) Answer questions about averages, max, min, columns, etc. 4) Chat about your data!"
elif "thank" in prompt_lower:
return "You're welcome! Ask me anything about your data!"
else:
return "Please load some data first (click 'Load Demo Data' or paste CSV), then ask me questions about it!"
# Create tabs
tab1, tab2, tab3 = st.tabs(["π€ Paste Data", "π¬ Chat", "π About"])
# ============================================================================
# TAB 1: Paste Data
# ============================================================================
with tab1:
st.header("π€ Analyze Data")
st.info("π‘ Load demo data or paste your CSV to start analyzing!")
# Demo mode
if st.button("π Load Demo Data (Click to test)", use_container_width=True):
demo_csv = """Name,Age,Salary,Department,Experience_Years
Alice,25,50000,Sales,2
Bob,30,60000,IT,5
Charlie,35,75000,HR,8
David,28,55000,Sales,3
Eve,32,65000,IT,6"""
st.session_state.csv_data = demo_csv
st.success("β
Demo data loaded! Check the Chat tab to ask questions about it.")
st.subheader("Or paste your CSV data here:")
csv_text = st.text_area(
"Paste CSV content (headers, comma-separated):",
value=st.session_state.get('csv_data', ''),
height=150,
placeholder="Name,Age,Salary\nAlice,25,50000\nBob,30,60000",
key="csv_input"
)
if csv_text.strip():
try:
# Parse CSV from text
df = pd.read_csv(io.StringIO(csv_text))
# Store in session state for chat to access
st.session_state.current_df = df
st.success(f"β
Data loaded: {df.shape[0]} rows, {df.shape[1]} columns")
# Display data preview
st.subheader("π Data Preview")
st.dataframe(df, use_container_width=True)
# Display statistics
st.subheader("π Data Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Rows", len(df))
with col2:
st.metric("Columns", len(df.columns))
with col3:
st.metric("Memory", f"{df.memory_usage(deep=True).sum() / 1024:.2f} KB")
# Detailed statistics
try:
numeric_df = df.select_dtypes(include=['number'])
if not numeric_df.empty:
st.write("### Numeric Columns Summary")
st.write(numeric_df.describe().T)
else:
st.info("No numeric columns found in dataset.")
except:
st.info("Could not generate statistics for this data.")
# Ask AI about the data
st.subheader("β Ask AI About Your Data")
question = st.text_input(
"What would you like to know about this data?",
placeholder="e.g., What is the average salary? How many rows?",
key="data_question"
)
if question:
response = get_ai_response(question, df)
st.success("β
Analysis Complete")
st.write(response)
except Exception as e:
st.error(f"β Error parsing CSV: {str(e)[:100]}")
st.info("Make sure your CSV is properly formatted: headers on first line, comma-separated values.")
# ============================================================================
# TAB 2: Chat
# ============================================================================
with tab2:
st.header("π¬ Chat with AI Assistant")
st.write("Have a conversation about your data.")
# Show current data status
if st.session_state.current_df is not None:
st.success(f"β
Data loaded: {len(st.session_state.current_df)} rows, {len(st.session_state.current_df.columns)} columns")
st.write(f"Columns: {', '.join(st.session_state.current_df.columns.tolist())}")
else:
st.warning("β οΈ No data loaded yet. Go to 'Paste Data' tab and load data first!")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
user_input = st.text_input(
"Type your message:",
placeholder="Ask me about your data...",
key="chat_input"
)
if user_input:
# Add user message immediately
st.session_state.messages.append({"role": "user", "content": user_input})
# Get response with data context
response = get_ai_response(user_input, st.session_state.current_df)
# Add assistant message
st.session_state.messages.append({
"role": "assistant",
"content": response
})
# Display latest messages
st.divider()
with st.chat_message("assistant"):
st.markdown(response)
# ============================================================================
# TAB 3: About
# ============================================================================
with tab3:
st.header("βΉοΈ About This App")
st.markdown("""
### π― What is this?
**LLM Data Analyzer** is a tool for analyzing data and having conversations about your datasets.
### π§ Technology Stack
- **Framework:** Streamlit
- **Hosting:** Hugging Face Spaces (Free Tier)
- **Language:** Python
### β‘ Features
1. **Data Analysis**: Paste CSV and analyze your data
2. **Smart Chat**: Chat with AI about your data
3. **Statistics**: View comprehensive data summaries
4. **Demo Mode**: Test with sample data instantly
### π How to Use
1. **Load Data** - Click "Load Demo Data" or paste your CSV
2. **View Preview** - See your data in table format
3. **Chat** - Go to Chat tab and ask questions about your data
4. **Get Insights** - AI analyzes and answers questions
### π‘ Example Questions
- "What's the average salary?"
- "Show me the maximum values"
- "How many rows do I have?"
- "What columns are in the data?"
- "Give me a summary"
### π CSV Format Example
```
Name,Age,Salary,Department
Alice,25,50000,Sales
Bob,30,60000,IT
Charlie,35,75000,HR
```
### π Powered By
- [Hugging Face](https://huggingface.co/) - AI platform and hosting
- [Streamlit](https://streamlit.io/) - Web framework
- [Pandas](https://pandas.pydata.org/) - Data analysis
### π Troubleshooting
**Chat can't see my data?**
- Make sure to load data in the "Paste Data" tab first
- Then go to "Chat" tab - it will show your data status
**How do I format CSV?**
- First line: column headers separated by commas
- Following lines: data values separated by commas
### π Links
- [GitHub Repository](https://github.com/Arif-Badhon/LLM-Data-Analyzer)
- [Hugging Face Hub](https://huggingface.co/)
---
**Version:** 2.1 | **Last Updated:** Dec 2025
π‘ **Note:** Chat now has access to your data! Load data first, then ask questions.
""") |