File size: 16,560 Bytes
d122c3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import openai
from openai import OpenAI
import json
import re
from config import Config
from chunking_utils import chunk_code_content, combine_chunk_evaluations, create_chunk_summary

class AIEvaluator:
    def __init__(self):
        self.model = Config.EVALUATION_MODEL
        if self.model == 'openai':
            # Set API key for OpenAI
            if not Config.OPENAI_API_KEY:
                raise ValueError("OpenAI API key not found. Please set OPENAI_API_KEY in your environment or .env file.")
            
            try:
                # Initialize OpenAI client (v1.0+ style)
                self.client = OpenAI(api_key=Config.OPENAI_API_KEY)
                print("βœ… OpenAI client initialized successfully")
            except Exception as e:
                print(f"❌ Error initializing OpenAI client: {e}")
                raise e
    
    def evaluate_submission(self, submission, hackathon):
        """
        Evaluate a submission based on the hackathon criteria
        """
        if self.model == 'openai':
            # Check if content is too large and needs chunking
            code_content = submission.code_content or ""
            doc_content = submission.documentation_content or ""
            total_content = code_content + doc_content
            
            # If content is large, use chunked evaluation
            if len(total_content) > 3000:  # 3K characters threshold (force chunking earlier)
                print(f"πŸ“Š Large content detected ({len(total_content):,} chars), using chunked evaluation...")
                return self._evaluate_with_chunking(submission, hackathon)
            else:
                print(f"πŸ“Š Standard evaluation for content ({len(total_content):,} chars)...")
                return self._evaluate_with_openai(submission, hackathon)
        else:
            return self._evaluate_with_unixcoder(submission, hackathon)
    
    def _evaluate_with_openai(self, submission, hackathon):
        """
        Use OpenAI GPT-4 to evaluate the submission
        """
        evaluation_prompt = self._build_evaluation_prompt(submission, hackathon)
        
        print("πŸ“‹ EVALUATION PROMPT BEING SENT:")
        print("=" * 60)
        print(evaluation_prompt[:500] + "..." if len(evaluation_prompt) > 500 else evaluation_prompt)
        print("=" * 60)
        
        try:
            print("πŸš€ Sending request to OpenAI GPT-4o...")
            print(f"πŸ“ Evaluation prompt length: {len(evaluation_prompt)} characters")
            
            # Use OpenAI client to generate evaluation
            response = self.client.chat.completions.create(
                model="gpt-4o",  # Using GPT-4o for best quality and speed
                messages=[
                    {"role": "system", "content": "You are a STRICT technical evaluator and hackathon judge. You must be critical, use the full scoring range 0-10, and provide differentiated scores. DO NOT give grade inflation. Most projects should score in the 4-7 range. Be harsh but fair."},
                    {"role": "user", "content": evaluation_prompt}
                ],
                temperature=0.1,  # Lower temperature for more consistent, strict evaluation
                max_tokens=2000
            )
            
            result_text = response.choices[0].message.content
            print("βœ… OpenAI Response received!")
            print("=" * 80)
            print("πŸ€– OPENAI GPT-4o RESPONSE:")
            print("=" * 80)
            print(result_text)
            print("=" * 80)
            print(f"πŸ“Š Response length: {len(result_text)} characters")
            print(f"πŸ’° Tokens used: {response.usage.total_tokens if hasattr(response, 'usage') else 'Unknown'}")
            
            parsed_result = self._parse_evaluation_result(result_text)
            print("βœ… Response parsed successfully!")
            print(f"πŸ“ˆ Parsed scores: {parsed_result}")
            
            return parsed_result
            
        except Exception as e:
            print(f"❌ Error in OpenAI evaluation: {str(e)}")
            print("πŸ”„ Falling back to default scores...")
            return self._generate_fallback_scores()
    
    def _evaluate_with_chunking(self, submission, hackathon):
        """
        Evaluate large submissions by chunking the content
        """
        try:
            # Chunk the code content
            code_content = submission.code_content or ""
            chunks = chunk_code_content(code_content, max_chunk_size=4000)
            
            print(f"πŸ“¦ Created {len(chunks)} chunks for evaluation")
            print(create_chunk_summary(chunks))
            
            chunk_results = []
            
            for i, chunk in enumerate(chunks, 1):
                print(f"πŸ” Evaluating chunk {i}/{len(chunks)} ({chunk['size']:,} chars)...")
                
                # Create a temporary submission object for this chunk
                chunk_submission = type('ChunkSubmission', (), {
                    'code_content': chunk['content'],
                    'documentation_content': submission.documentation_content or "",
                    'project_name': f"{submission.project_name} (Chunk {i})",
                    'project_description': submission.project_description,
                    'team_name': submission.team_name,
                    'participant_email': submission.participant_email
                })()
                
                # Evaluate this chunk
                chunk_result = self._evaluate_with_openai(chunk_submission, hackathon)
                
                # Add chunk metadata
                chunk_result['chunk_id'] = i
                chunk_result['chunk_weight'] = chunk['size']  # Weight by content size
                
                chunk_results.append(chunk_result)
                
                print(f"βœ… Chunk {i} evaluated: {chunk_result['overall_score']}/10")
            
            # Combine results from all chunks
            print("πŸ”„ Combining results from all chunks...")
            combined_result = combine_chunk_evaluations(chunk_results)
            
            print(f"🎯 Final combined score: {combined_result['overall_score']}/10")
            return combined_result
            
        except Exception as e:
            print(f"❌ Error in chunked evaluation: {str(e)}")
            print("πŸ”„ Falling back to standard evaluation...")
            # Fallback to standard evaluation with truncated content
            return self._evaluate_with_openai_truncated(submission, hackathon)
    
    def _evaluate_with_openai_truncated(self, submission, hackathon):
        """
        Evaluate with truncated content as fallback
        """
        # Truncate content to manageable size
        code_content = (submission.code_content or "")[:4000]
        doc_content = (submission.documentation_content or "")[:2000]
        
        # Create truncated submission
        truncated_submission = type('TruncatedSubmission', (), {
            'code_content': code_content,
            'documentation_content': doc_content,
            'project_name': submission.project_name,
            'project_description': submission.project_description,
            'team_name': submission.team_name,
            'participant_email': submission.participant_email
        })()
        
        print("⚠️ Using truncated content for evaluation")
        result = self._evaluate_with_openai(truncated_submission, hackathon)
        
        # Keep feedback as-is without prefixing a truncation note
        return result
    
    def _build_evaluation_prompt(self, submission, hackathon):
        """
        Build the prompt for AI evaluation
        """
        criteria = json.loads(hackathon.criteria) if hackathon.criteria else self._get_default_criteria()
        
        prompt = f"""
# STRICT Hackathon Evaluation - NO GRADE INFLATION

## Hackathon Information
**Name**: {hackathon.name}
**Theme/Description**: {hackathon.description}

## Evaluation Criteria
{hackathon.evaluation_prompt}

## Submission to Evaluate
**Team**: {submission.team_name}
**Project Name**: {submission.project_name}
**Description**: {submission.project_description}

### Code Content
```
{self._truncate_content(submission.code_content, 3000)}
```

### Documentation
```
{self._truncate_content(submission.documentation_content, 2000)}
```

## CRITICAL EVALUATION INSTRUCTIONS

You are a STRICT technical evaluator. Use the FULL range of scores 0-10. DO NOT give similar scores to different projects.

### SCORING GUIDELINES (BE HARSH AND REALISTIC):

**0-2: Poor/Failing**
- Major issues, non-functional, or completely irrelevant
- Severe security vulnerabilities or broken code
- No documentation or completely unclear

**3-4: Below Average**
- Basic functionality but significant flaws
- Poor code quality, structure, or practices
- Minimal effort or incomplete implementation

**5-6: Average/Acceptable**
- Works as intended with minor issues
- Standard implementation, nothing special
- Adequate documentation and code quality

**7-8: Good/Above Average**
- Well-implemented with good practices
- Shows clear understanding and effort
- Good documentation and structure

**9-10: Excellent/Outstanding**
- Exceptional quality, innovative approach
- Production-ready code with best practices
- Comprehensive documentation and testing

        ## STRICT EVALUATION CRITERIA:

1. **Relevance (0-10)**: Does it ACTUALLY solve the problem stated? Is it directly related to the theme?
2. **Technical Complexity (0-10)**: How sophisticated is the implementation? Rate based on actual technical depth, not just lines of code.
3. **Creativity (0-10)**: Is this a unique approach or just a standard tutorial implementation?
4. **Documentation (0-10)**: Is there proper README, comments, setup instructions? Can someone else run this?
5. **Productivity (0-10)**: Code organization, error handling, scalability, maintainability.

        ## ADDITIONAL KEY-POINT ANALYSIS (brief, 1-2 sentences each):
        - Out of the box thinking: How original/novel is the approach?
        - Problem-solving skills: How effectively does the code decompose and solve the problem?
        - Research capabilities: Evidence of learning, citations, comparisons, benchmarking, or exploration
        - Understanding the business: Does it align with real user/business needs and constraints?
        - Use of non-famous tools or frameworks: Any lesser-known tech used purposefully

        ## MANDATORY REQUIREMENTS:
- VARY your scores significantly between projects
- Use decimals (e.g., 3.2, 6.7, 8.1) for precision
- Be CRITICAL and identify real weaknesses
- NO GRADE INFLATION - most projects should score 4-7 range
- Only exceptional projects deserve 8-10
- Don't hesitate to give low scores (1-3) for poor work

        ## Response Format (STRICT JSON):

```json
{{
  "relevance_score": <precise score 0-10 with 1 decimal>,
  "technical_complexity_score": <precise score 0-10 with 1 decimal>,
  "creativity_score": <precise score 0-10 with 1 decimal>,
  "documentation_score": <precise score 0-10 with 1 decimal>,
  "productivity_score": <precise score 0-10 with 1 decimal>,
  "overall_score": <calculated average with 1 decimal>,
  "feedback": "<HONEST, CRITICAL feedback. Point out specific flaws, missing features, and areas for improvement. Don't sugarcoat.>",
  "detailed_scores": {{
    "relevance_justification": "<specific reasons for this score>",
    "technical_justification": "<specific technical assessment>",
    "creativity_justification": "<specific creativity assessment>",
    "documentation_justification": "<specific documentation assessment>",
            "productivity_justification": "<specific code quality assessment>",
            
            "out_of_box_thinking": "<1-2 sentence assessment>",
            "problem_solving_skills": "<1-2 sentence assessment>",
            "research_capabilities": "<1-2 sentence assessment>",
            "business_understanding": "<1-2 sentence assessment>",
            "non_famous_tools_usage": "<1-2 sentence assessment>"
  }}
}}
```

REMEMBER: Be a tough but fair judge. Real-world projects have flaws - identify them!
"""
        return prompt
    
    def _truncate_content(self, content, max_length=2000):
        """
        Truncate content to fit within token limits
        """
        if not content:
            return "No content provided"
        
        if len(content) > max_length:
            return content[:max_length] + "\n... [content truncated]"
        return content
    
    def _parse_evaluation_result(self, result_text):
        """
        Parse the AI response into structured scores
        """
        try:
            # Try to extract JSON from the response
            json_match = re.search(r'```json\s*(.*?)\s*```', result_text, re.DOTALL)
            if json_match:
                json_str = json_match.group(1)
            else:
                # Try to find any JSON object in the response
                json_match = re.search(r'\{.*\}', result_text, re.DOTALL)
                json_str = json_match.group(0) if json_match else result_text
            
            scores = json.loads(json_str)
            
            # Validate and normalize scores
            return {
                'relevance_score': self._normalize_score(scores.get('relevance_score', 5.0)),
                'technical_complexity_score': self._normalize_score(scores.get('technical_complexity_score', 5.0)),
                'creativity_score': self._normalize_score(scores.get('creativity_score', 5.0)),
                'documentation_score': self._normalize_score(scores.get('documentation_score', 5.0)),
                'productivity_score': self._normalize_score(scores.get('productivity_score', 5.0)),
                'overall_score': self._normalize_score(scores.get('overall_score', 5.0)),
                'feedback': scores.get('feedback', 'Evaluation completed.'),
                'detailed_scores': json.dumps(scores.get('detailed_scores', {}))
            }
        except Exception as e:
            print(f"Error parsing evaluation result: {str(e)}")
            # Return fallback scores if parsing fails
            return self._generate_fallback_scores()
    
    def _normalize_score(self, score):
        """
        Ensure score is between 0 and 10
        """
        try:
            score = float(score)
            return max(0.0, min(10.0, score))
        except:
            return 5.0
    
    def _generate_fallback_scores(self):
        """
        Generate varied fallback scores when evaluation fails
        """
        import random
        
        # Generate varied scores in the 4-6 range (realistic fallback)
        scores = {
            'relevance_score': round(random.uniform(4.0, 6.5), 1),
            'technical_complexity_score': round(random.uniform(3.5, 6.0), 1),
            'creativity_score': round(random.uniform(3.0, 5.5), 1),
            'documentation_score': round(random.uniform(2.5, 5.0), 1),
            'productivity_score': round(random.uniform(3.5, 6.0), 1)
        }
        
        # Calculate overall as average
        overall = sum(scores.values()) / len(scores)
        
        return {
            **scores,
            'overall_score': round(overall, 1),
            'feedback': 'Automatic evaluation completed due to technical issue. Scores are estimated based on basic analysis. Manual review strongly recommended for accurate assessment.',
            'detailed_scores': json.dumps({
                'note': 'Fallback scores - technical evaluation failed',
                'recommendation': 'Manual review required for accurate scoring'
            })
        }
    
    def _get_default_criteria(self):
        """
        Get default evaluation criteria
        """
        return [
            {'name': 'Relevance', 'weight': 0.20},
            {'name': 'Technical Complexity', 'weight': 0.20},
            {'name': 'Creativity', 'weight': 0.20},
            {'name': 'Documentation', 'weight': 0.20},
            {'name': 'Productivity', 'weight': 0.20}
        ]
    
    def _evaluate_with_unixcoder(self, submission, hackathon):
        """
        Use UniXCoder for evaluation (placeholder for future implementation)
        """
        # This would use UniXCoder embeddings and similarity scoring
        # For MVP, we'll fall back to OpenAI
        return self._evaluate_with_openai(submission, hackathon)