Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Model ID | |
| model_id = "apu20/Llama-3.2-3B-Instruct_Tele" | |
| # Load quantized model (switch to 8-bit if needed) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16, # Use float16 for reduced memory footprint | |
| device_map="cpu" # Force model to run on CPU | |
| ) | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| # Tokenize input | |
| inputs = tokenizer(message, return_tensors="pt").to("cpu") # Ensure inputs are on CPU | |
| # Generate response | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Gradio Chat Interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |