Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import MBartForConditionalGeneration, MBartTokenizer, MarianMTModel, MarianTokenizer
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
# Load multilingual summarization model and tokenizer
|
| 5 |
+
multilingual_summarization_model = MBartForConditionalGeneration.from_pretrained('facebook/mbart-large-50')
|
| 6 |
+
multilingual_summarization_tokenizer = MBartTokenizer.from_pretrained('facebook/mbart-large-50')
|
| 7 |
+
|
| 8 |
+
# Dictionary of languages and their corresponding Hugging Face model codes
|
| 9 |
+
LANGUAGES = {
|
| 10 |
+
"English": "en_XX",
|
| 11 |
+
"French": "fr_XX",
|
| 12 |
+
"Spanish": "es_XX",
|
| 13 |
+
"German": "de_DE",
|
| 14 |
+
"Chinese": "zh_CN",
|
| 15 |
+
"Russian": "ru_RU",
|
| 16 |
+
"Arabic": "ar_AR",
|
| 17 |
+
"Portuguese": "pt_PT",
|
| 18 |
+
"Hindi": "hi_IN",
|
| 19 |
+
"Italian": "it_IT",
|
| 20 |
+
"Japanese": "ja_XX",
|
| 21 |
+
"Korean": "ko_KR",
|
| 22 |
+
"Dutch": "nl_NL",
|
| 23 |
+
"Polish": "pl_PL",
|
| 24 |
+
"Turkish": "tr_TR",
|
| 25 |
+
"Swedish": "sv_SE",
|
| 26 |
+
"Greek": "el_EL",
|
| 27 |
+
"Finnish": "fi_FI",
|
| 28 |
+
"Hungarian": "hu_HU",
|
| 29 |
+
"Danish": "da_DK",
|
| 30 |
+
"Norwegian": "no_NO",
|
| 31 |
+
"Czech": "cs_CZ",
|
| 32 |
+
"Romanian": "ro_RO",
|
| 33 |
+
"Thai": "th_TH",
|
| 34 |
+
"Hebrew": "he_IL",
|
| 35 |
+
"Vietnamese": "vi_VN",
|
| 36 |
+
"Indonesian": "id_ID",
|
| 37 |
+
"Malay": "ms_MY",
|
| 38 |
+
"Bengali": "bn_BD",
|
| 39 |
+
"Ukrainian": "uk_UA",
|
| 40 |
+
"Urdu": "ur_PK",
|
| 41 |
+
"Swahili": "sw_KE",
|
| 42 |
+
"Serbian": "sr_SR",
|
| 43 |
+
"Croatian": "hr_HR",
|
| 44 |
+
"Slovak": "sk_SK",
|
| 45 |
+
"Lithuanian": "lt_LT",
|
| 46 |
+
"Latvian": "lv_LV",
|
| 47 |
+
"Estonian": "et_EE",
|
| 48 |
+
"Bulgarian": "bg_BG",
|
| 49 |
+
"Macedonian": "mk_MK",
|
| 50 |
+
"Albanian": "sq_AL",
|
| 51 |
+
"Georgian": "ka_GE",
|
| 52 |
+
"Armenian": "hy_AM",
|
| 53 |
+
"Kazakh": "kk_KZ",
|
| 54 |
+
"Uzbek": "uz_UZ",
|
| 55 |
+
"Tajik": "tg_TJ",
|
| 56 |
+
"Kyrgyz": "ky_KG",
|
| 57 |
+
"Turkmen": "tk_TM"
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
# Function to get the appropriate translation model and tokenizer
|
| 61 |
+
def get_translation_model(source_lang, target_lang):
|
| 62 |
+
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
| 63 |
+
model = MarianMTModel.from_pretrained(model_name)
|
| 64 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 65 |
+
return model, tokenizer
|
| 66 |
+
|
| 67 |
+
# Function to translate text
|
| 68 |
+
def translate_text(text, source_lang, target_lang):
|
| 69 |
+
model, tokenizer = get_translation_model(source_lang, target_lang)
|
| 70 |
+
inputs = tokenizer([text], return_tensors="pt", truncation=True)
|
| 71 |
+
translated_ids = model.generate(inputs['input_ids'], max_length=1024)
|
| 72 |
+
translated_text = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
| 73 |
+
return translated_text
|
| 74 |
+
|
| 75 |
+
# Summarization function with multi-language support
|
| 76 |
+
def summarize_text(text, source_language="English", target_language="English"):
|
| 77 |
+
source_lang_code = LANGUAGES[source_language]
|
| 78 |
+
target_lang_code = LANGUAGES[target_language]
|
| 79 |
+
|
| 80 |
+
# If the input language is not English, translate to English
|
| 81 |
+
if source_lang_code != "en_XX":
|
| 82 |
+
text = translate_text(text, source_lang_code, "en_XX")
|
| 83 |
+
|
| 84 |
+
# Summarize the text using mBART
|
| 85 |
+
inputs = multilingual_summarization_tokenizer(text, return_tensors='pt', padding=True, truncation=True)
|
| 86 |
+
summary_ids = multilingual_summarization_model.generate(inputs['input_ids'], num_beams=4, max_length=200, early_stopping=True)
|
| 87 |
+
summary = multilingual_summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 88 |
+
|
| 89 |
+
# Translate summary to the target language if needed
|
| 90 |
+
if target_lang_code != "en_XX":
|
| 91 |
+
summary = translate_text(summary, "en_XX", target_lang_code)
|
| 92 |
+
|
| 93 |
+
return summary
|
| 94 |
+
|
| 95 |
+
# Streamlit interface
|
| 96 |
+
st.title("Multi-Language Text Summarization Tool")
|
| 97 |
+
|
| 98 |
+
text = st.text_area("Input Text")
|
| 99 |
+
source_language = st.selectbox("Source Language", options=list(LANGUAGES.keys()), index=list(LANGUAGES.keys()).index("English"))
|
| 100 |
+
target_language = st.selectbox("Target Language", options=list(LANGUAGES.keys()), index=list(LANGUAGES.keys()).index("English"))
|
| 101 |
+
|
| 102 |
+
if st.button("Summarize"):
|
| 103 |
+
if text:
|
| 104 |
+
summary = summarize_text(text, source_language, target_language)
|
| 105 |
+
st.subheader("Summary")
|
| 106 |
+
st.write(summary)
|
| 107 |
+
else:
|
| 108 |
+
st.warning("Please enter text to summarize.")
|