File size: 12,362 Bytes
0569e42 2dd1e4f a8cb1c0 9bfab8f 1c5f934 6150e51 1c5f934 ce2ea77 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 4dcfc4d 1c5f934 a8cb1c0 2dd1e4f 4dcfc4d 2dd1e4f 4dcfc4d 2dd1e4f 4dcfc4d 2dd1e4f a8cb1c0 4dcfc4d a8cb1c0 2dd1e4f 4dcfc4d a8cb1c0 2dd1e4f 4dcfc4d a8cb1c0 2dd1e4f 4dcfc4d a8cb1c0 2dd1e4f a8cb1c0 2dd1e4f 4dcfc4d a8cb1c0 ce2ea77 4dcfc4d ce2ea77 4dcfc4d ce2ea77 4dcfc4d ce2ea77 6150e51 4dcfc4d 6150e51 4dcfc4d 6150e51 4dcfc4d 6150e51 4dcfc4d 6150e51 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 6150e51 4dcfc4d ce2ea77 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 7db628a 9bfab8f 7db628a 9bfab8f 7db628a 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f dee227a 7db628a 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d ce2ea77 9bfab8f ce2ea77 a8cb1c0 9bfab8f 4dcfc4d 9bfab8f ce2ea77 2dd1e4f 9bfab8f 4dcfc4d 9bfab8f 2dd1e4f ce2ea77 4dcfc4d 6150e51 ce2ea77 4dcfc4d ce2ea77 6150e51 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 7db628a 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 9bfab8f 4dcfc4d 1c5f934 4dcfc4d 1c5f934 ce2ea77 4dcfc4d ce2ea77 4dcfc4d 1c5f934 4dcfc4d 1c5f934 ce2ea77 9bfab8f ce2ea77 9bfab8f ce2ea77 6150e51 ce2ea77 6150e51 ce2ea77 9bfab8f a8cb1c0 4dcfc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import json
import os
from typing import Optional, Union
from PIL import Image
import base64
from io import BytesIO
import gradio as gr
import markdown
import zipfile
import tempfile
from datetime import datetime
import re
def export_to_zip(images, conversations, format_type="original"):
"""
Export images and conversation data to a ZIP file
Args:
images: List of extracted images
conversations: Conversation JSON data
format_type: Format type, "original" or "sharegpt"
Returns:
Path to the generated ZIP file
"""
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
zip_filename = os.path.join(temp_dir, f"export_{timestamp}.zip")
# Create a ZIP file
with zipfile.ZipFile(zip_filename, 'w') as zipf:
# Save images
for i, img in enumerate(images):
img_path = os.path.join(temp_dir, f"image_{i}.png")
img.save(img_path)
zipf.write(img_path, f"images/image_{i}.png")
os.remove(img_path) # Delete temporary image file
# Save conversation data
json_path = os.path.join(temp_dir, "conversations.json")
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(conversations, f, ensure_ascii=False, indent=4)
zipf.write(json_path, "conversations.json")
os.remove(json_path) # Delete temporary JSON file
return zip_filename
def base64_to_image(
base64_str: str,
remove_prefix: bool = True,
convert_mode: Optional[str] = "RGB"
) -> Union[Image.Image, None]:
"""
Convert a base64 encoded image string to a PIL Image object
Args:
base64_str: Base64 encoded image string (with or without data: prefix)
remove_prefix: Whether to automatically remove the "data:image/..." prefix (default True)
convert_mode: Convert to the specified mode (e.g., "RGB"/"RGBA", None means no conversion)
Returns:
PIL.Image.Image object, returns None if decoding fails
"""
try:
# 1. Handle Base64 prefix
if remove_prefix and "," in base64_str:
base64_str = base64_str.split(",")[1]
# 2. Decode Base64
image_data = base64.b64decode(base64_str)
# 3. Convert to PIL Image
image = Image.open(BytesIO(image_data))
# 4. Optional mode conversion
if convert_mode:
image = image.convert(convert_mode)
return image
except (base64.binascii.Error, OSError, Exception) as e:
print(f"Base64 decoding failed: {str(e)}")
return None
def process_message_to_sharegpt_format(message):
"""
Convert messages to ShareGPT format
Args:
message: Original message data
Returns:
Data in ShareGPT format
"""
sharegpt_images = []
sharegpt_conversation = []
image_idx = 0
for i, message_item in enumerate(message):
role = message_item['role']
content_list = message_item['content']
whole_content = ""
for content_item in content_list:
content_type = content_item['type']
if content_type == "text":
content_value = content_item['text']
whole_content += content_value
elif content_type == "image_url":
content_value = content_item['image_url']['url']
whole_content += "<image>"
image = base64_to_image(content_value)
if image:
sharegpt_images.append(image)
image_idx += 1
if i == 0:
sharegpt_conversation.append({"from": "human", "value": whole_content})
continue
if "<interpreter>" in whole_content:
gpt_content, observation_content = whole_content.split("<interpreter>", -1)
sharegpt_conversation.append({"from": "gpt", "value": gpt_content})
sharegpt_conversation.append({"from": "observation", "value": "<interpreter>"+observation_content})
elif i != 0:
sharegpt_conversation.append({"from": "gpt", "value": whole_content})
sharegpt_data_item = {
"conversations": sharegpt_conversation,
"images": sharegpt_images
}
return sharegpt_data_item
def extract_images_from_messages(messages):
"""
Extract all images from messages
Args:
messages: Message JSON data
Returns:
Extracted image list and updated messages
"""
images = []
for message in messages:
if 'content' in message and isinstance(message['content'], list):
for content_item in message['content']:
if content_item.get('type') == 'image_url':
image_url = content_item.get('image_url', {}).get('url', '')
if image_url.startswith('data:'):
# Extract base64 image
image = base64_to_image(image_url)
if image:
images.append(image)
return images, messages
def process_message(file_path):
try:
# Read JSON file
with open(file_path, "r", encoding="utf-8") as f:
messages = json.load(f)
# Extract images
images, messages = extract_images_from_messages(messages)
# Convert to ShareGPT format
sharegpt_data = process_message_to_sharegpt_format(messages)
# Create HTML output
html_output = '<div style="color: black;">' # Add a wrapper div for all content, set text color black
for message_item in messages:
role = message_item['role']
content = message_item['content']
# Style based on role
if role == "user" or role == "human":
html_output += f'<div style="background-color: #f0f0f0; padding: 10px; margin: 10px 0; border-radius: 10px; color: black;"><strong>User:</strong><br>'
elif role == "assistant":
html_output += f'<div style="background-color: #e6f7ff; padding: 10px; margin: 10px 0; border-radius: 10px; color: black;"><strong>Assistant:</strong><br>'
else:
html_output += f'<div style="background-color: #f9f9f9; padding: 10px; margin: 10px 0; border-radius: 10px; color: black;"><strong>{role.capitalize()}:</strong><br>'
# Handle content
for content_item in content:
content_type = content_item['type']
if content_type == "text":
# Convert Markdown text to HTML
md_text = content_item['text']
html_text = markdown.markdown(md_text, extensions=['fenced_code', 'codehilite'])
html_output += f'<div style="color: black;">{html_text}</div>'
elif content_type == "image_url":
content_value = content_item['image_url']['url']
# If base64 image
if content_value.startswith("data:"):
html_output += f'<img src="{content_value}" style="max-width: 100%; margin: 10px 0;">'
else:
html_output += f'<img src="{content_value}" style="max-width: 100%; margin: 10px 0;">'
html_output += '</div>'
html_output += '</div>' # Close outermost div
return html_output, images, messages, sharegpt_data
except Exception as e:
return f"<div style='color: red;'>Error processing file: {str(e)}</div>", [], None, None
def upload_and_process(file):
if file is None:
return "Please upload a JSON file", [], None, None
html_output, images, messages, sharegpt_data = process_message(file.name)
return html_output, images, messages, sharegpt_data
def use_example():
# Use example file
example_path = "test_message_gpt.json"
return process_message(example_path)
def handle_export_original(images, conversations):
"""Handle export request for original format"""
if not images or conversations is None:
return None
zip_path = export_to_zip(images, conversations, "original")
return zip_path
def handle_export_sharegpt(sharegpt_data):
"""Handle export request for ShareGPT format"""
if sharegpt_data is None:
return None
images = sharegpt_data.get("images", [])
conversations = sharegpt_data.get("conversations", [])
if not images and not conversations:
return None
zip_path = export_to_zip(images, conversations, "sharegpt")
return zip_path
# Ensure example file exists
def setup_example_file():
# Here we need to create the example file because we don't have actual content
# In a real application, you should place the original test_message_gpt.json file in the root directory
example_path = "test_message_gpt.json"
# Create a simple example if the file does not exist
if not os.path.exists(example_path):
example_messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Hello, please introduce yourself."
}
]
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Hello! I am an AI assistant. I can help answer questions, provide information, and have conversations. I am designed to assist users with a variety of tasks, from simple Q&A to more complex discussions.\n\nI can handle text information and also understand and describe images. Although I have some limitations, I will do my best to provide useful, accurate, and helpful responses.\n\nHow can I help you today?"
}
]
}
]
with open(example_path, "w", encoding="utf-8") as f:
json.dump(example_messages, f, ensure_ascii=False, indent=2)
# Set up the example file
setup_example_file()
# Create Gradio interface
with gr.Blocks(title="ChatGPT Conversation Visualizer", css="div.prose * {color: black !important;}") as demo:
gr.Markdown("# ChatGPT Conversation Visualization Tool")
gr.Markdown("Upload a JSON file containing ChatGPT conversation records or use the example file to view visualization results.")
with gr.Row():
file_input = gr.File(label="Upload JSON File", file_types=[".json"])
with gr.Row():
col1, col2 = gr.Column(), gr.Column()
with col1:
visualize_button = gr.Button("Visualize Uploaded Conversation")
with col2:
example_button = gr.Button("Use Example File")
with gr.Row():
output = gr.HTML(label="Conversation Content")
# Add export buttons
with gr.Row():
with gr.Column():
export_original_btn = gr.Button("Export Original Format")
download_original_file = gr.File(label="Download Original Format ZIP")
with gr.Column():
export_sharegpt_btn = gr.Button("Export ShareGPT Format")
download_sharegpt_file = gr.File(label="Download ShareGPT Format ZIP")
# State variables to store current results
current_images = gr.State([])
current_json = gr.State(None)
current_sharegpt = gr.State(None)
visualize_button.click(
fn=upload_and_process,
inputs=[file_input],
outputs=[output, current_images, current_json, current_sharegpt]
)
example_button.click(
fn=use_example,
inputs=[],
outputs=[output, current_images, current_json, current_sharegpt]
)
export_original_btn.click(
fn=handle_export_original,
inputs=[current_images, current_json],
outputs=[download_original_file]
)
export_sharegpt_btn.click(
fn=handle_export_sharegpt,
inputs=[current_sharegpt],
outputs=[download_sharegpt_file]
)
# Launch Gradio app
demo.launch() |